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CLIMAX is the name of a program that calculates the INS spectrum of 
isolated molecules within the Bright-Wilson formalism. It is the best of its 

kind and a yardstick by which others are found wanting. 
 

aCLIMAX, takes a different approach but aims to be of equal standing in the 
community. 
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Overview 
aCLIMAX [1] is an unsupported stand alone program running in Visual Basic. It is used to 
interpret inelastic neutron scattering (INS) spectra taken on TOSCA like spectrometers; i.e. 
spectrometers with very good energy resolution operating over broad energy transfer ranges 
with low final energies.  
 
Correctly assigned INS spectra of simple model compounds are invaluable in understanding 
the spectra of more complex systems. As an example; the assigned spectra of several model 
compounds could act as a source of vibrational motifs for comparison with, say the INS 
results obtained from a hydrocarbon adsorbed on a catalytic surface. Achieving a convincing 
assignment for model compounds is, therefore, a matter of great importance. aCLIMAX 
supports the use of ab-initio calculations as tools to provide the best assignment schemes for 
their observed INS spectra. The calculations presented here are based on those used in the 
CLIMAX program that, despite its limitations, has been successfully used to fit ab-initio 
results to INS data  [2]. 
 
Two general types of forces control the overall shape of an INS spectrum and in the limit of 
ideality they can be separated. The first comes from the internal field, which allows molecular 
identity to be maintained in the gas phase and is responsible for internal dynamics (ideally 
relative atomic displacements without motion of the centre of molecular mass). The second 
comes from the external field, which maintains the molecular crystal as a solid and governs 
the external, or lattice, dynamics (ideally displacements of the centre of molecular mass 
without relative motions of the atoms within a given molecule). This idealistic separation of 
forces is surprisingly successful but it must not be imagined that it is globally valid, specific 
intermolecular interactions, like hydrogen bonds, are not subject to this approach. 
 
We can exploit this approximation and use ab-initio programs working on single molecules to 
calculate the motion of the atoms in the internal vibrational modes and subsequently use 
approximate shapes to represent the external modes. Programs, like GAUSSIAN ‘98 and 
DMOL [3] are fast, accurate, widely supported and simple to use. They are easily capable of 
producing all the raw data needed to produce the INS spectrum for many organic molecules. 
Moreover, these programs are familiar to the wider chemical community 
 
Here we present a convenient method of generating the INS spectrum from such ab-initio 
results, aCLIMAX. This program follows current best practices and incorporates harmonic 
events beyond the two-quantum level, as well as anisotropic external Deby-Waller effects. 
The theory of INS spectroscopy will be introduced in terms of the mathematical framework 
used in aCLIMAX and all of the working equations are derived or referenced. The necessary 
computing environment and software packages are detailed. The description of aCLIMAX is 
given in terms of its required inputs. Working within the frame of known approximate 
methods the external displacements of molecules is outlined. Our conceptual approach to the 
calculated spectrum and its relationship to the observed INS spectrum is presented.  Finally 
worked examples demonstrate how the package works.  Some supporting software is 
presented. 



1. Inside the Black-Box 
1.1 Introduction to Scattering Theory 
 
The fundamental theory of INS spectroscopy was developed very soon after the first nuclear 
piles began operating and is well covered in standard texts [4].    
 
When analysing the results of a neutron experiment we shall need to relate the number of 
neutrons seen in our detector as it is positioned at different angles around the sample. If the 
detector subtends a small solid angle, dΩ, at the sample the differential crossection is 
 
      d  . σ   =       number of neutrons seen by the detector (per second)  .  1 
     dΩ                   number of incident neutrons (per second)                    dΩ 
 
 
The flux of a beam of particles is the product of their velocity and density, υ.ρ. The required 
density is   2ψρ =  
The incident wave function is plane wave in nature and the scattered wave is spherical in 
nature, see below, and are conveniently written 
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If the detector is a distance, r, away from the sample and has an area, ds, then 
dΩ = ds/r2. In elastic scattering the incident and final velocities are equal. 
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If the neutron exchanged energy with the scattering system the differential scattering 
crossection must contain energy terms.  
 

)(.)(.
.2

.
.

2
2

2

2

ωδψψ
πυ

υσ
h

h
+−ΨΨ






=

Ω fiiiff
i

f EEVm
ddE

d r  

 
There are four terms in the expression the first is the ratio of the incident and final neutron 
velocities. The second term groups the fundamental constants and the final term ensures that 
the total energy of the system is conserved; ie that the difference between the incident and 
final neutron energies, E, equals a quantised energy state of the system, hω; or zero for elastic 
scattering. The third term describes how the initial states are related to the final states through 
the scattering potential, V(r). (Where Ψ is the wave function of the scattering system.) This 
expression is valid only if the perturbation introduced by the presence of the scatterer is weak. 
This is not strictly true since it is known that neutrons are scattered by the ‘strong nuclear 
force’. However this force is extremely short ranged and may therefore be successfully 



approximated, the Born approximation, to a weak perturbation. Only one form for V(r) can 
successfully reproduce spherical (S-) wave scattering from nuclei, the Fermi pseudo-potential, 
arising from a series of atoms l at positions Rl. 
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P-waves are not observed in neutron scattering experiments, because the neutron energies are 
too low. The P-wave has little amplitude at the small radial values typical of atomic nuclei. 
(This will be familiar to chemists in the shape of electron p-orbitals in atoms.) It is clear then 
that the basis of neutron scattering rests on a series of approximations that are good only 
because the neutron interacts weakly, ie infrequently, with samples. Moreover, the strength of 
these interactions, expressed as b, are experimentally determined observables with, as yet, no 
simple theoretical basis.  
 
 
It is convenient rewrite the double differential scattering crossection equation in terms of a 
van Hove response function, S, which emphasises the structure and dynamics of the sample, 
the ‘Scattering Law’. 
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The response function is 
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and the correlation function, Y, gives the evolution of the scattering system in time, t. 
 
1.2 Inelastic Scattering 
 
The correlation function  
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represents the position, R(t), of an atom of, say, hydrogen at time, t, if it was originally at 
R(0) at t = 0. It is conventional to decompose the atomic position into vectors within a 
molecular framework, R(t) = c(t) + l(t) + u(t). Where the position of the molecular centre of 
mass is given by the vector, c(t). The internal vector, l(t), determines the mean atomic position 
w.r.t the centre of mass and u(t) its vibrational displacement. This leads to expressions similar 
to the general correlation function, with that for vibration being 
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Where the scattering law has been decomposed according to the separation of forces 
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Using BAABA .exp.expexp.exp 2= . We can  
rewrite, for example, Svib. 
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Performing the Fourier transform from the time to the frequency domain it can be appreciated 
that the time independent terms will include contributions from all frequencies whilst time 
dependent terms will be specific to particular frequencies. The form for a simple harmonic 
oscillator at frequency ω, is: 
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Where the Θ term is a temperature, T, factor; the Φ term is a Debye-Waller factor and the In 
are Bessel functions of the first kind.   
 
1.2 Harmonic Systems 
 
1.2.1 The Isotropic Harmonic Oscillator 
In a chemical context vibrational spectroscopy covers the whole frequency range from a few 
wavenumbers upwards but is mostly concerned with the internal vibrations of the molecule. 
These have values, ca.1000 cm-1 up to the highest stretching fundamental, the H-H stretch at 
4400 cm-1. These typical values can be compared with room temperature, 300K = 204 cm-1. 
However the discrepancy is much more marked under real experimental conditions where the 
samples are cooled to 20K ( = 14 cm-1). Such that 
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Because the argument of the Bessel function is very small, it can be expanded 
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substituting into eq(1) yields the intensity expression for the isotropic harmonic oscillator. 
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This remarkably simple expression is a basis for understanding the INS intensities observed in 
scattering from molecules. Its simplicity does not derive from the application of any drastic 
approximations, indeed those used lead to errors which are much smaller than the presently 
attainable experimental errors.  
 
Here, the conventional symbol for the Mean Square Displacement, U2, has been used.  
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where U2 is given in Å2, the oscillator frequency, ν, is in cm-1, and the mass, µ, in amu. 
 
Remarks 
The mass; in the case of a monatomic lattice the idea of mass can lead to no confusion. 
However in, even very simple, chemical systems there are many different atoms involved in 
the molecule’s vibrations. In general all of the atoms in a molecule are involved in all of the 
vibrations except for special considerations of symmetry, of Group oscillations (eg -C=O), 
and of local oscillations (eg -CH overtones). Moreover, because of the predominant scattering 
crossection of hydrogen it is the extent to which this atom is displaced during a vibration that 
is important. Almost certainly the mass, µ, will not be the atomic mass of hydrogen but 
somewhat more, dependent upon how many other heavier atoms are also involved in the 
motion. In the ab-initio programmes this is dealt with through the solution of the dynamical 
matrices, probably expressed in mass weighted coordinates [5]. 
 
The elastic line; occurs when no quanta of energy are exchanged between the neutron and the 
molecule, n = 0. (This corresponds to the Rayleigh line in Raman scattering.) The elastic line 
in INS is intense, decreases rapidly with momentum transfer and contains many complex 
contributions. It is very difficult to analyse this data and it is not directly observed in TOSCA 
spectra. It is given no further consideration here. 
 
1.2.2 Fundamentals 
Substituting for n = 1, in to the expression yields 
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There are two idealised experiments; first, a constant Q2 experiment, and; second, a constant 
ω experiment. In the first experiment the values of ki and kf  are adjusted to maintain a 
constant Q2, two transitions are observed. The first is the elastic line and the second, at ω0, is 
the intensity associated with the excitation of the molecule into its first excited state, the 
fundamental. (For the advised reader it will be obvious that this Stokes transition is 
accompanied by an anti-Stokes transition, appearing at -ω0. However, because of the 
cryogenic experimental temperatures there are very few oscillators above the ground state, 
anti-Stokes bands are therefore very weak and are ignored.) In the second ideal experiment, at 



the transition ω0, Q2 is varied. Initially, at low values of Q2, the observed intensity increases 
and finally, at high values of Q2, the observed intensity falls away. This final fall is due to the 
Debye-Waller factor, exp(-2W) = exp(-Q2.U2), whilst the original rise was given by the pre-
exponential factor, Q2.U2. The position of intermediate maximum can be determined by 
differentiation, 
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Spectrometers like TOSCA, with very small final energies, have Q ~ ki, therefore 
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If the oscillator mass of the spectrum is unity then spectrometers like TOSCA are optimally 
designed to measure these spectra because, irrespective of the vibrational frequency, the 
maximum intensity is obtained.  
 
1.2.3 Overtones  
Overtones occur whenever the oscillator is excited from the ground state to levels above the 
first excited state. There is no unique route for the loss of two quanta by the neutron to a 
harmonic oscillator, the excitation of the sample by two single quanta (2 ω0(0-1)) is 
energetically equivalent to the excitation of the sample into its second excited state (ω0(0-2)). 
The strength of the overtone bands, Sn, can be obtained by substituting, n > 1. Fortunately, for 
spectrometers like TOSCA, the expressions simplify further for transitions above, say, 1000 
cm-1.[6] 

n

n

nnnnS


































−∝
µµ

ω 1.exp.1
!

)0,Q(  

 
 
As can be seen the strength of the overtone sequence from heavier masses falls away 
dramatically as µ increases. Fortunately, the lower frequency fundamentals mostly involve 
heavier atoms and without this effect the low lying fundamentals would generate sequences 
that would completely overshadow higher fundamentals. 
 
1.3 Anharmonicity 
 
The vibrations of a molecule are ideally described as a system of independent oscillators. 
Breakdown of this approximation, involving the mixing of supposedly separate vibrational 
states, is one expression of anharmonicity. More commonly, even for systems that are well 
described as independent oscillators, the overtones do not fall at exact multiples of the 
fundamentals. Rather 
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In molecular systems this aspect of anharmonicity usually produces overtones at frequencies 
slightly lower than harmonic, ie the anharmonicity constant, x, is positive. The exchange of 
two individual quanta with a neutron is no longer equivalent to the exchange of a double 
quantum and structure will appear in the overtone band.  



 
In this picture the internal vibrational spectra of molecules consists of a series of δ-functions 
representing the elastic line, δ(ω), the n fundamentals, δ(ω-νn), and their overtones, eg δ(ω-
3νn), 
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1.4 External Modes 
 
So far only non-recoiling and isolated molecules have been considered. In the solid state 
molecules reside on their lattice sites and are prevented from recoiling, under the impact of 
the neutron, only by the forces which stabilise the crystal. These forces are responsible for the 
external modes of the molecule, ie modes that involve displacements of the undeformed 
molecule as a whole. The intermolecular forces are much weaker than the intramolecular 
forces the external, or lattice, vibrations have frequencies about 150 cm-1. Similar to the 
internal vibrations the external vibrations, P1 etc., can also be described by 
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Combining these two expressions allows a description of the total scattering law 
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Such that associated with each internal vibrational mode, νi, there is the full spectrum of 
external vibrations, the phonon-wings. (These will be familiar from UV spectroscopy where 
the internal vibrational spectrum appears as a wing on the allowed electronic transitions.) It 
should be noted that no change in the total INS intensity occurs but the vibrational transition 
no longer has a simple shape. Also [7] 
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Phonon wings have more or less complex shapes dependant upon how many orders have been 
excited. At the lowest values of Q only one phonon order has been excited; the band origin 
retains most of its intensity and the wing has a similar shape to the external mode spectrum. 
At higher Q values more phonon orders are excited producing complex wing shapes which 
are most often smooth and unfeatured but can be difficult to interpret. (The calculation of the 
vibrational intensities must be performed before the impact of phonon wings can be 
calculated. Therefore, we shall retain the convention of gas phase molecular spectroscopy and 
refer to all transitions as originating from internal modes, be they the one-quantum, 
fundamentals or more complex multi-quantum events.)  
 
It is through the phonon-wings that neutron vibrational spectroscopy gives access to the 
internal and the external vibrational displacements, simultaneously and separately. [8] 
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The intensity of the Bragg reflections observed in crystallographic determinations are 
governed by the same Debye-Waller factors introduced above. Such that a complete analysis 
of diffraction data will provide the same atomic MSD values, if measured at the same 
temperature. These are familiar as the anisotropic thermal ellipsoids commonly reported in 
contemporary crystallographic journals. Large external contributions to the total MSD 
suppress the experimental intensities in both diffraction and INS measurements and the best 
work is always conducted at cryogenic temperatures. 
 
The total MSD’s obtained by diffraction and INS do not always agree and, usually, the 
diffraction value is the larger. This discrepancy is generally caused by the static-disorder of 
molecules occupying several alternative positions of about equal thermodynamic stability. 
The atomic positions are dispersed in real space and the scattering factors are no longer in 
phase. This has the same effect as changing the atomic positions dynamically. There is a loss 
of Bragg intensity, which is easily mistaken for a large MSD value. In very favourable cases 
this disorder can be detected and incorporated into the final structural model. In less 
favourable cases a severely anisotropic shape or the large size of the thermal ellipsoid will 
strongly suggest the presence of an unresolved disorder. In unfavourable cases it passes 
undetected. The result of structural disorder is always to exaggerate the value of the MSD’s as 
obtained from diffraction experiments. 



1.5 Real Systems 
 
1.5.1 Anisotropy 
Isotropic harmonic oscillators are chemically rare, most systems involve significant 
anisotropy’s resulting from the presence of stretching, eg -CH 3000 cm-1,  bending, eg -CH2 
1400 cm-1,  and deformation modes, eg C-C-C 800 cm-1,  in the same molecule.  
 
1.5.2 Aligned Oscillators 
After isotropy, the next simplest case has all the oscillators vibrating in the same direction. 
This implies that there is only one type of lattice site for the molecule and all the molecules 
are parallel. Restating the scattering law for a vibrational displacement U, exclusively in the 
direction x, occurring at the associated frequency νi. 
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Here our nomenclature is modified to cover the presence of more than one vibrational mode 
of more than a single scattering atom and to agree with present literature practice. The MSD 
tensor of the scattering atom, j, in the vibrational mode, i, at frequency, νi, is jBνi. Only the 
component of Q along U is effective and the dot product of the vectors Q and U is required. 
(This equation also defines the vector transpose operation, T.)  If the Q is entirely parallel to U 
(ie ϕ = 0), S is maximised. If there is no component of Q parallel to U (ie ϕ = 90), S is zero. In 
this respect the selection rules of neutron scattering are similar to the electric vector selection 
rules of ir spectroscopy. Samples of aligned oscillators in single crystals large enough for 
neutron beams are rare and more typically only powders are available. In experiments on 
powders the relative directions of the vibrational displacements and the momentum transfer 
vector are not fixed but lie at random. The scattering law must be averaged for all directions 
in space. The total internal MSD tensor of the atom is jAinternal and the powder averaged result 
is given by [9];  
 

Powder
):exp(.:),( AQQBQQQ jjij i

S −= νν
 

Where, 

∑=

=

i
jinternalj

T
jjj

i

iii

ν

ννν

BA

UUB .

 



Powder averages can be calculated in several ways; 
1. in the cases of strictly oblate or prolate MSD's, precise analytical expressions exist [10] 

but lack generality;  
2. numerical averaging techniques are very general [11] but tend to be slow if precision is 

required;  
3. approximate methods are general, rapid and reasonably accurate [9].   
 
The aCLIMAX program uses the 'almost-isotropic approximation' [9] it provides accurate 
averages when applied to MSD's that are not too anisotropic. (The errors are ca. 5% if the 
ratio of the minor to major axies of the thermal ellipsoid is three or less but may approach 
20% if, exceptionally, the ratio exceeds five).  
 
Three important consequences follow from powder averaging; first, all vibrations have some 
component parallel to Q and are therefore observable; second, the intensity of each 
fundamental is weakened by a factor three; third, combination bands are observable. 
Combination bands occur when Q has components along more than one vibrational direction.  



1.6 Working equations 
 
Here we present the equations used in aCLIMAX to calculate the INS spectrum from 
Gaussian output for fundamentals and overtones, or combinations, to the fourth order. 
 
Appropriate Spectrometers 
The aCLIMAX program is specifically written to analyse data obtained on the TOSCA 
spectrometer at the ISIS facility, The Rutherford Appleton Laboratory, UK. However, 
TOSCA is very similar in its operational characteristics to several other spectrometers (see 
section 1.2.2 and links through [1]) and, within this limitation, the calculated results should be 
generally applicable. 
 
The values of momentum transfer, Q, are calculated according to   
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Where, on TOSCA, the scattering angle is (either 45°, or) 135° and the final neutron energy, 
ω, is 32 cm-1. 
 
Gaussian output 
The MSD calculated in Gaussian '98, and incidentally most other normal coordinate 
programs, are given in the mass-weighted coordinate system and the sum of all atomic 
displacements in any normal mode is normalised.    
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To recover the atomic displacements in conventional units, Å, from the normalised 
displacement vectors, jc, given by Guassian, where jM is the mass of the jth atom in amu; 
 

i

16.759M..

.

ννν

ννν

jijij

ij
T
ijij cc

CB

C

=

=

 

 
 
The principal working equation in aCLIMAX is based on the need to treat data taken from 
powders and it cannot treat experimental results from single crystals. (Where Tr implies that 
the trace of the matrix representation of the tensor has been taken, this operation yields the 
scalar magnitude of the tensor. The : symbol implies contraction of the two tensors, in matrix 
representation this is achieved by performing the trace operation on the product of the two 
matrices.) Here we also introduce the weightings associated with the scattering crossections of 
the different atoms, jσ.  



1.6.1 One-quantum events 
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1.6.2 Two-quantum events 
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The first-overtones (0-2) and combinations (0-1, 0-1') and (0-1', 0-1) are enumerated 
separately. Here we adopt the isotropic approximation for the Debye-Waller factor, an 
'almost-isotropic' approximation for β exists [9] but it is unnecessarily cumbersome.  
 
 
1.6.3 Three-quantum events 
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1.6.4 Four-quantum events 
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1.6.5 Phonon Wings 
In the same way that the total displacements of an atom due to internal modes can be written 
in tensor form, jAinternal, so too can the external contributions, jAExternal. The various methods 
of obtaining the individual matrix elements are described below, see section 1.7. Further, the 
almost-isotropic approximation can be applied to the calculation of the phonon wing intensity. 
Notice that the individual contribution of each atom is treated independently since each atom 
moves, for any given internal vibration, in a specific direction with respect to its external 
tensor. Moreover the external tensor of one particular atom will only equal that of another 
atom if they are related through the crystalline symmetry.  
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These expressions are strictly valid only for spectrometers working at constant-Q, which is 
obviously not the case for TOSCA. The intensity of the band origin, SO, should, however, be 
reasonably well approximated since these are relatively sharp in frequency and hence in Q.  
The intensity of the wing, SW, is underestimated since, as the wing develops, it reflects the 
strength of a band origin measured at slightly greater Q. This is mitigated somewhat by the 
method of calculating the distribution of the wing intensity among the several phonon orders. 
Ten orders of phonon expansion are used in a-CLIMAX and the strength of the pth order is 
[12] 
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The value of Qp is determined from sum of the transition frequency of the parent internal 
mode and the weighted mean frequency of the pth phonon wing. This ensures that the intensity 
distribution in wings is weighted towards the higher phonon orders. 
 
1.6.5.1 Construction of the Phonon Wing Shape 
Only one wing shape is available in aCLIMAX for all atoms and this may not be appropriate 
for complex systems. Nonetheless any deviations are unlikely to be severe since the shape of 
the one-phonon wing is generally found to be unimportant. However, it should be born in 
mind as a possible explanation for complex spectral features. Any wing shape that can be 
constructed is acceptable but surprisingly good results are obtained from even the simplest 
shapes. The shape of the one-phonon spectrum is convoluted with itself to form the shape of 
the second, this is convolved with the one-phonon to give the third, etc. to the tenth order. 
Irrespective of the shape of the one-phonon wing the higher orders rapidly revert to gaussian 
forms. The area of each of the phonon orders is initially normalised to unity. Their final 
individual weights are dependent on the position of the parent band origin and were discussed 
above. 
 
 
 
1.7 Standard Approaches to the estimation of External Atomic Displacements. 
 
1.7.1 Analysis of Crystallographic data. 
Modern crystallography is often performed at low temperatures to reduce the impact of the 
Debye-Waller factor on the observed intensities and the resulting crystallographic data is 
analysed to yield the total atomic displacements (or thermal parameters, or anisotropic 
displacement parameters). If the published ellipsoids are given in conventional units (Å2 x104) 
and referred to the molecular geometry they can by readily exploited. Unfortunately, although 
the units are conventional the ellipsoids are almost always given in respect of the reciprocal 
lattice and as such cannot be easily exploited. The reported data must be transformed onto the 
molecular frame.  
 
Occasionally crystallographic data are treated to a rigid body analysis. In this procedure, after 
making some allowance for the internal displacements of the atoms, the external 
displacements have been analysed in terms of torsions about the principal axies of inertia and 
vibrations along these axies. These are conventionally given as the L, T and S tensors [8], and 
can be used to provide the jAExternal tensors.    
 
1.7.2 Sachs-Teller mass tensor 
In most molecules hydrogen atoms of chemical compounds, generally, lie away from the 
centre of mass and have significant radii of gyration, Rg. Since neutrons interact with these 
hydrogen atoms the neutron experiences the full rotational inertia, I, of the molecule. 
Naturally the neutron also experiences the linear inertia (or mass) of the whole molecule, 
MMol. The effective mass, therefore, changes as the neutron's impact angle at the target atom, 



i, changes. Its average value can be expressed as a tensor, the Sachs-Teller mass tensor. 
Where the atomic masses are given in amu and distances in Å. 
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We also define the reciprocal lattice-frequency tensors, for librational frequencies of the 
molecule about its principal axies, νI

-1, or along its axies, νT
-1. 
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The individual frequencies should be related to spectral features observed in the external 
mode spectrum of the sample, or might be regarded as simply fitting parameters. This 
approach is a naïve expansion of the Einstein Oscillator approximation to the dynamics of 
monatomic lattices, here 6 frequencies are allowed.  
 
 
Then  
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1.7.2.1 The isotropic field approximation 
The full use of the Sachs-Teller approach allows a more realistic modelling of the crystalline 
environment but if it were truly needful a full molecule in lattice calculation is better. A more 
useful approximation is often to ignore the complications of a full S-T treatment and set all 
the external forces to be equal [15]. Under this regime the response of the molecule to 
scattering is to be displaced about its principal axes of inertia in inverse proportion to the 
moments of inertia and along the axies inversely in respect of its molecular mass. Thus 
 

1;

10

1

01

10

1

01

−∝























+

























∝ I

M

M

M

I

I

I

externalj

c

b

a

externalj AA    

 
 
Non-spherical, or anisotropic, components appear only if Ia≠ Ib≠ Ic, and the translational, 1/M, 
contribution is strictly isotropic. Moreover, translational modes appear at the lowest 
frequencies and their contributions are small. In this approximation these small, isotropic, 
transational components are subsumed within the librational effects. This gives the ratios of 
the leading terms in the external tensor but it remains to know their sum.  
 
Application of the isotropic approximation to the experimental observations can provide an 
estimate of jAExternal. Choosing a suitable vibrational transition, in an uncongested region 
around 500 - 600 cm-1, measure the band origin intensity, SO, and that of its wing, SW, the 
magnitude of iAExternal is; 
 








−
≈

Total

Origin
External

Tr
j S

S
ln.

Q
3
2A    

 
(Here the working equation of section 1.6.5 has been rearranged.) Knowing the magnitude of 
the tensor and the ratios of the individual components on the diagonal allows a first 
approximation to the tensor to be constructed. In practice, when using aCLIMAX, the initial 
value of Tr

iAExternal is often estimated by inspection, varying the value used in the calculation 
until the calculated spectrum becomes an acceptable representation of the observed spectrum. 
  
1.7.3 Recoil 
In soft solids at low temperatures, and all systems at high enough temperatures, molecules 
may experience little hindrance to local diffusion. The transfer of even modest momentum 
will result in the excitation of all phonon orders. The peak of the elastic line intensity moves 
to higher energies as the momentum transferred increases. In the vibrational region the wing 
component of the vibrational transition now contains all of the observed intensity and the 
intensity remaining at the origin has completely disappeared. Fortunately the band shape 
simplifies to become a broad gaussian but it peaks at energies considerably above the band 
origin. The final state of the molecule is above the potential restoring its equilibrium position, 
ie it has been excited into the continuum of external modes. This final state is similar to that 
of molecules in the gas and the molecule is said to have recoiled [16]. The separation between 
the recoil band and origin is determined by the effective mass and the momentum transferred.  



In the case of monatomic systems (or for energy transfers in excess of several eV) the 
effective mass is the atomic mass. However, for atoms in molecules (excited to typical 
thermal energies) the atomic mass is irrelevant, since the molecule responds as an 
undeforming body. 
 
Therefore, for convenience, we define an average Sachs-Teller Mass to be applied to all 
spectral features irrespective of which of the n atoms scattered the neutron. On spectrometers 
like TOSCA, this mass controls the final position, νR, of the recoiled band in respect of the 
band origin, ν0.  
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The width of the gaussian shaped recoil-band is determined by the lattice frequencies and is 
usually treated as a fitting parameter. 
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