

RE Williamson, B Jones, A Pertica, DW Posthuma de Boer, CM Warsop

Development of Instability and Impedance Models on the ISIS Synchrotron

Introduction

- ISIS is the pulsed spallation neutron and muon source at the Rutherford Appleton Laboratory in the UK
- Operation centres on a 50 Hz rapid cycling proton synchrotron
- Delivers a mean beam power of 0.2 MW onto two tungsten targets
- Loss-limited machine with head-tail instability one of the main intensity limits

ISIS Synchrotron (RAL)

- 50 Hz rapid cycling proton synchrotron
- ~3×10¹³ protons per pulse (ppp)
- Sinusoidal main magnet field
- 70 800 MeV
- H⁻ charge exchange injection

Contents

- Investigating the impedance of the machine (beam-based measurements and bench measurements)
- Improving knowledge of beam physics (instability simulations)
- Implementing plans for new instability damper system
- Dual harmonic RF system (h = 2 & 4)
- Non-adiabatic bunching
- Nominal tunes $(Q_x, Q_y) = (4.31, 3.83)$
- Peak incoherent tune shifts exceeding ~-0.5
- Loss limited
- Natural value chromaticity $\xi_x = \xi_y = -1.4$

- Coasting beam with RF off and DC main magnet fields
- Nominal tunes result in loss at intensities >3×10¹² ppp
- Coasting beam instability growth rate (τ^{-1}) from exponential fit to sidebands from FFT of vertical BPM
- Linear dependence with beam intensity, *I*
- Matches coasting beam Sacherer theory ¹

$$\tau^{-1} = -\mathrm{Im}(\Delta\omega) = -\mathrm{Im}\left(i\frac{ec}{4\pi Q\gamma E_0}Z_{\perp}I\right)$$

 $\Delta \omega = \text{transverse frequency shift}$ Q = be $\gamma E_0 = \text{total energy}$ $Z_\perp = \text{in}$

(dotted blue) as a function of time. Peak $I = 4 \times 10^{12}$ ppp.

Q = betatron tune $<math>Z_{\perp} = impedance$

Changing tune moves baseband frequency

- Alters growth rate directly
- Effective impedance inferred from equation
- \bullet Sharp narrowband impedance at ~85 kHz
- Peak full width ~25 kHz
- Measured narrowband impedance could be driver for head-tail

Instability Simulations

- New, stand-alone macro-particle tracking code to model transverse instabilities on ISIS
- Based on existing in-house longitudinal code ²
- Transverse smooth focusing model
- Wakefield kicks calculated for each longitudinal slice
- Convergence tests performed
- Benchmarks with unbunched, coasting beam, $\beta = 1$
- Thick resistive wall and narrowband resonator
- Transverse matched waterbag distribution
- Uniform longitudinal distribution with no dp/p

Resistive Wall Wake

- Benchmark ³ with beam pipe $\sigma = 100 \ \Omega^{-1} m^{-1}$
- Effective impedance inferred from sideband growth rate
- Scan betatron tune to probe growth versus frequency
- Similar functional form to thick model $Z_{RW} \propto \omega^{-1/2}$

Resonator Wake

- Benchmark with $f_{res} = 10$ MHz, Q = 10, $R_s = 10$ M Ω
- Matched waterbag with initial 5 mm offset
- Expected growth in dipole moment observed
- Sideband growth at predicted frequency
- Simulate several betatron tunes to establish growth rate as a function of frequency
- Code development and benchmarking ongoing

Damping System

- A prototype damping system is being developed to suppress the effects of the vertical head-tail instability.
- Uses a split-electrode beam position monitor as a pickup and a ferrite loaded kicker.
- Recent tests have shown that with the experimental damping system active, sidebands obtained from the BPM differential

Bench Measurements

- Initial longitudinal impedance bench measurements have been performed using a Fair-Rite, Material 43 ferrite ring as a device-under-test. The test apparatus included a 0.5 mm diameter copper wire, two resistive matching sections and a vector network analyser.
- The setup has also been simulated using CST Microwave Studio® in the frequency domain.
- Measured and simulated results agree up to ~40 MHz, above which discrepancies are observed, possibly due to resonances in the test pipe.

signal are reduced by around 10 dB.

- Plans for future studies include measurements in the time domain and of transverse impedance. Of particular interest are the ISIS ceramic vacuum vessels with RF shields; these and similar measurements will help characterise the dominant impedances of the ISIS ring in more detail.
- Modelling of the kicker itself is also taking place to assess its impedance contribution as well as to better understand the feedback system.

³ R.E. Williamson *et al.*, Proc. HB'16, pp. 155 – 159 (2016) ⁴ A. Pertica *et al.*, Proc. IBIC'17, TUPWC04 (2017)