First-Principles Vibrational spectroscopy and lattice dynamics of materials in the solid state

Keith Refson
Computational Science and Engineering Department
STFC Rutherford Appleton Laboratory
First principles modelling

\[-\frac{\hbar^2}{2m_e} \Psi + \hat{V} \Psi = E \Psi \]
Density Functional Theory

Approximations to exchange and correlation
• Local Density Approximation (LDA)
• Generalised Gradient Approximation (GGA)

Modified from Mattsson et al., (2005)
DFT with a Plane-wave basis

➢ Periodic boundary conditions applied to ions orbitals, electron densities.
➢ Electron density represented on grid.
➢ Basis coefficients of orbitals also stored on grid in \(G \)-space.
➢ Use FFTs to evaluate terms in Hamiltonian.
➢ Never construct Hamiltonian, only compute effect of operator.
➢ Kohn–Sham equations solved using SCF
➢ PW basis is efficient, accurate, robust.
➢ PW basis requires pseudopotentials.
➢ Mature technology – good algorithms.
➢ Robust in use, even by non experts.
The CASTEP project

- Original 1990s CASTEP code by Mike Payne/Accelrys reached end of life.

- Complete re-engineering of a new plane-wave code from scratch beginning 1999.

- Core “Developer Group” of P. Hasnip, S. Clark, M. Probert, C. Pickard, M. Segall, P. Lindan, (Payne) and in 2002, K. Refson.

- Commercialised by Accelrys and integrated into Materials Studio

- Aim: build a flexible, well-engineered development platform for new physics using modular software practices and documented API specification.

- Now at release 6.0.

- Excellent “Core” functionality with many additional capabilities; Structure, dynamics and many properties.
CASTEP Capabilities

CASTEP Capabilities

CASTEP has a variety of Hamiltonians and XC functionals

- Pure local DFT (LDA, LSDA, PBE, RPBE, WC,...)
- Hybrid HF exchange methods (HF, Screened HF, PBE0, B3LYP)
- Model methods (LDA+U)
- More under development (TDDFT, GW,..).

CASTEP can perform many spectroscopic calculations

- IR and raman spectroscopy (vibrational/phonon)
- INS and IXS spectroscopy (vibrational phonon)
- Conduction-band optical dielectric spectra (EELS etc)
- Core level spectroscopy (ELNES, XANES)
- NMR chemical shifts
Vibrational Spectroscopy in CASTEP

- Full *ab-initio* lattice dynamics code
- Plane-wave basis with pseudopotentials
- DFPT and supercell methods
- Phonons across full BZ by interpolation
- Symmetry analysis of eigenvectors
- Highly parallel for HPC use (can use 1000's of cores)
Parallel supercomputing enables large calculations and high throughput.

http://hpcsg.esc.rl.ac.uk/scarf/

http://www.hector.ac.uk
Approaches to first principles
Lattice Dynamics

Density–Functional Perturbation Theory
- Works with LDA/GGA Hamiltonians
- Only primitive cell calculations required
- Fourier interpolation of dynamical matrices to entire BZ from grid of q-points.
- Can compute dielectric permittivity and Born effective charges
- LO/TO splitting included.
- IR absorptivity or Raman activity included.
Modelling the spectrum

Orientationally averaged infrared absorptivity

\[
I_m = \left| \sum_{\kappa, b} \frac{1}{\sqrt{M_\kappa}} Z_{\kappa, a, b}^* u_{m, \kappa, b} \right|^2
\]

Raman cross section

\[
I_{\text{raman}}^m \propto \left| e_i \cdot A^m \cdot e_s \right|^2 \frac{1}{\omega_m} \left(\frac{1}{\exp(\hbar \omega_m / k_B T) - 1} + 1 \right)
\]

\[
A_{\alpha, \beta}^m = \sum_{\kappa, \gamma} \frac{\partial^3 E}{\partial \mathcal{E}_\alpha \partial \mathcal{E}_\beta \partial u_{m, \kappa, \gamma}} u_{m, \kappa, \gamma} = \sum_{\kappa, \gamma} \frac{\partial e_{\alpha \beta}}{\partial u_{m, \kappa, \gamma}} u_{m, \kappa, \gamma}
\]

Inelastic neutron cross section

\[
S^n(\omega_m) = \int dQ \sum_{\kappa} \sigma_{\kappa} \left\langle \frac{(Q \cdot u_{m, \kappa})^{2n}}{n!} \exp\left(-(Q \cdot u_{m, \kappa})^2 \right) \right\rangle
\]

Spectral response to light depends on response of electrons; for neutrons only nuclei.
NH4F studied in the ISIS TOSCA spectrometer.
Collaborator: Mark Adams (ISIS)
Structurally isomorphic with ice Ih
INS spectrum modelled using ACLIMAX software (A. J. Ramirez Cuesta)
Predicted INS spectrum agrees with experiment
NH4 libration modes in error by ? 5%.
Complete mode assignment achieved.

Raman and ir spectroscopy of C_{60}

- Above 260K takes Fm3m structure with dynamic rotational disorder
- m3m point group lower than I_h molecular symmetry
- Selection rules very different from gas-phase.
- Intramolecular modes and factor group splitting seen.
- Try ordered Fm3 model for crystal spectral calculation.
- Full CASTEP DFPT lattice dynamics calculation on Fm–3 and Pa3 phases
GGA Raman spectrum of C_{60}
Fig. 6 INS spectra of the internal modes of C_{60} in the $P\bar{a}3$ phase: recorded on TOSCA at 20 K (blue), recorded on MARI at 5 K with 1815 cm$^{-1}$ (olive green) and 1452 cm$^{-1}$ (black) incident energy compared with that generated from the CASTEP calculation (red).
GGA infrared spectrum of C$_{60}$
Approaches to first principles
Lattice Dynamics

Finite displacement and supercells
• Works with most general Hamiltonians (PBE0/B3LYP, LDA+U, DFT+D, USPs)
• Accurate, but computationally expensive
• Can not compute dielectric permittivity or Born effective charges
• Can not include LO/TO splitting.
• Can not compute IR or Raman absorptivity/activity
Re3N at high pressure

High Pressure – Re$_3$N

Phys Rev B 82, 244106 (2010)
INS spectrum of hydrogen on Raney Ni.

expt (TOSCA)

Full dispersion calc. for Ni(111)/H (scaled by 0.93).

Pair distribution function, $D(R)$, for hydrogen on Raney nickel. Fourier transform of the normalised difference between the two $S(Q)$.

![Graph showing the pair distribution function $D(R)$ for hydrogen on Raney nickel. The x-axis represents distance in Å, and the y-axis represents the value of $D(R)$ ranging from -0.10 to 0.20. Peaks are observed at regular intervals, indicating the distribution of hydrogen atoms around the nickel sites.](image)
Ni—H
Neutron: 1.68 Å
Ab initio: 1.68 Å
LEIS: 1.65 ± 0.05 Å
LEED: 1.84 ± 0.06 Å
H–storage materials

H transport in LiBH4
Raman studies of H transport

Expts: A. Borgschulte, EMPA
With A.J. Ramirez Cuesta, ISIS

@ low temperature
transport of intact BH₄ units

@ >225°C
all isotopomers are present
CASTEP Raman calculation

Measurement Calculation

LiBD_4

$x = 1$

v_1, $2v_4$, v_3^*, $v_{3'}$

$x = 0.87$

v_1, v_3^*

$x = 0.72$

v_1, v_3^*

$x = 0.45$

$v_1(D)$, $v_2(D)$, $v_3(D)$

$x = 0.14$

$v_1(D)$, $v_2(D)$, $v_3(D)$

$\text{LiB(H}_3\text{D}_x)_4$

$\text{Raman shift [cm}^{-1}\text{]}$

1500 to 1800

R. Gremaud et al, PRB 80 100301(R) (2009)
Diaspore (AlOOH)

Canonical example of hydrous mineral
Inelastic X-Ray scattering of diaspore

Conventional wisdom: OH groups interact weakly and modes show little dispersion.

Ab-initio calculations frequently show significantly dispersive OH stretch modes.

INS is not feasible in OH stretch range of 3000–4000 cm\(^{-1}\).

First IXS measurement of OH stretch dispersion ever performed at ID28 at ESRF

B. Winkler, *et. al.*
OH dispersion in diaspore
Developments in CASTEP

HPC performance and scaling
• Band parallelism
• Shared-memory node optimizations of FFT
• Wavefunction read/write optimizations
• Memory optimization
• Distributed $\langle \beta | \phi \rangle$

Recently added properties and capabilities
• DFT+D
• Hirshfeld atomic Charges
• NMR Hyperfine Coupling
• New GGAs (PBEsol, WC)
• Hybrid functionals (PBEh, B3LYP), SX
• LDA+U
• EELS and XANES with d core–hole final states
• Raman and infrared intensity/spectroscopy
• Electron localization functions (ELF)
• DFPT phonons for metallic systems
DFPT Phonons for Metals

- Metallic phonon DFPT
- Fourier interpolation for full DOS and dispersion calculations.

MgB2
LDA q=5x5x5 k=15x15x12
Under Development

Much faster Raman activities using DFPT

DFPT for magnetic systems

Non-collinear magnetism

GW for many-body perturbation theory
Treatment of excitations
Acknowledgements

Stewart Parker, Timmy Ramirez Cuesta & Mark Adams, Daniel Bowron, Alan Soper, Jon Taylor, Steve Bennington (ISIS)

Andreas Borgschulte (EMPA)

Boern Winkler, Alexandra Friedrich and Dan Wilson (Frankfurt)

HECToR funded from EPSRC (UKCP)

STFC E–Science Facility (SCARF)