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Abstract

In order to understand the properties of materials the determination of their structure is essential.
If a material can be grown as a well-ordered single crystal, its structure can be fully determined
with conventional crystallographic methods based on Bragg scattering. Such methods provide the
average structure, a mathematical model in which the crystal consists of a perfectly periodic lattice
of identical unit cells. However, many important materials depart from this ideal. Due to disorder,
their real structure locally deviates from the average structure. The structure of such materials
can be investigated using diffuse scattering, a weak structured signal which appears in addition to
Bragg peaks in the diffraction images. Although a number of methods have been developed over
the years to analyze diffuse scattering from single crystals, all have their limitations. Contrary to
single crystals, diffuse scattering from powder samples can be routinely interpreted using the Pair
Distribution Function (PDF) analysis. In this approach the total scattering from a powder sample
is Fourier transformed to extract information about the distribution of pairs of atoms in the real
structure.

This work continues the efforts of Miroslav Kobas and Philippe Schaub, former PhD students
from the Laboratory of Crystallography at ETH Zürich, who have shown the three dimensional ex-
tension of powder PDF, the 3D-PDF, and especially three dimensional difference pair distribution
function (3D-∆PDF) can be used for qualitative and quantitative interpretation of single crystal
disorder. The aim of the project described in this thesis was to extend this result and develop meth-
ods and tools for routine 3D-∆PDF analysis. It was shown that without loss of generality the short
range order can be described using only three basic types of correlations: substitutional correlation,
which describes dependencies between occupancies of disordered sites, size-effect, which describes
the relaxation around disordered sites, and atomic displacement correlations. The numerical values
of such correlations can be obtained through least squares refinements. The 3D-∆PDF approach
can efficiently be applied not only on the level of atoms, but also on the level of molecules.

In the course of this project the program Yell for performing 3D-∆PDF refinements was de-
signed and implemented using C++ programming language. The program is thoroughly documented
and released for Mac and Windows operating systems. Yell is a free software and its source code
is available under the GPL license.

The 3D-∆PDF approach was tested on diffuse scattering from four crystals. In the first case of
a complex intermetallic compound hP386-Al57.4Cu3.5Ta39.0 the quality of experiment did not allow
to extract quantitative diffuse scattering profiles. However, the model of disorder derived from the
average structure could qualitatively reproduce observed diffuse scattering. The diffuse scattering
from Ge4Bi2Te7, tris-t-butyl-1,3,5-benzene tricarboxamide and PbTe could be successfully analyzed
and short range order models could be quantitatively refined with Yell. Furthermore, the tris-t-
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butyl-1,3,5-benzene tricarboxamide example was used to assess the reliability of single crystal diffuse
scattering analysis. It was shown that 3D-∆PDF can provide excellent accuracy which is mostly
determined by the quality of data reduction, in particular compensation for experimental systematic
errors coming from background scattering, the resolution function and geometrical distortions.



Zusammenfassung

Für das Verständnis der Eigenschaften von Materialien ist die Kenntnis ihrer Strukturen von entschei-
dender Bedeutung. Für den Fall, dass Materialien als wohlgeordnete Einkristalle verfügbar sind,
können deren Strukturen vollständig mit konventionellen kristallographischen Methoden anhand der
Braggstreuung bestimmt werden. Die Ergebnisse solcher Untersuchungen ist die mittlere Struktur,
also ein mathematisches Modell, das den Kristall als ein perfektes periodisches Gitter identischer Ein-
heitszellen beschreibt. Viele wichtige Materialien weichen jedoch von diesem Idealbild ab. Aufgrund
von Fehlordnung ist deren reale Struktur auf lokaler Ebene nicht mit der mittleren Struktur iden-
tisch. Die strukturellen Eigenschaften solcher Materialien können mit Hilfe der diffusen Streuung,
welches ein schwaches strukturiertes Signal ist, das zusätzlich zu Braggreflexen in einem Streubild
beobachtet werden kann, untersucht werden. Zwar wurden im Laufe der Jahre eine Vielzahl von
Methoden zur Untersuchung diffuser Streuung von Einkristallen entwickelt, jedoch sind alle mit Ein-
schränkungen verbunden. Im Gegensatz zu Einkristallen wird die diffuse Streuung von Pulverproben
routinemässig mit der Paarverteilungsmethode (Pair Distribution Function, PDF) analysiert. Bei
diesem Ansatz wird die totale Streuung einer Pulverprobe fouriertransformiert, um die Information
über die Verteilung der atomaren Paare in der Realstruktur zu erhalten.

Diese Dissertation führt die Arbeiten von früheren Doktoranden am Labor für Kristallogra-
phie an der ETH Zürich, Miroslav Kobas und Philippe Schaub, fort. Sie konnten zeigen, dass
die Erweiterung der Pulver PDF auf drei Dimensionen (3D-PDF) und insbesondere die dreidimen-
sionale Differenzpaarverteilungsfunktion (3D-∆PDF) geeignet sind um qualitative und quantitative
Untersuchungen von Fehlordnung in Einkristallen durchzuführen. Die Absicht des in dieser Disser-
tation beschrieben Projekts war es die bisherigen Ergebnisse zu erweitern und neue Methoden und
Werkzeuge für den Routinegebrauch der 3D-∆PDF zu entwickeln. Es konnte gezeigt werden, dass es
möglich ist lokale Ordnung ohne Verlust der Allgemeinheit durch nur drei fundamentale Korrelation-
stypen zu beschreiben, nämlich der substitutionellen Korrelation, welche die Abhängigkeit zwischen
den Besetzungen verschiedener fehlgeordneter Lagen beschreibt, den Grösseneffekt, der die Relax-
ationen um die fehlgeordneten Lagen repräsentiert und Korrelationen zwischen den Verschiebungen
von Atomen. Die Quantifizierung der Nahordnungskorrelationen kann beispielsweise über die Meth-
ode der kleinsten Fehlerquadrate erfolgen. Die 3D-∆PDF Methode kann über die atomare Ebene
hinaus auch effizient für die Untersuchung fehlgeordneter Molekularstrukturen eingesetzt werden.

Im Verlaufe dieses Projektes wurde das Computerprogramm Yell zur Ausführung von 3D-
∆PDF Verfeinerungen entwickelt und in der Programmiersprache C++ implementiert. Das Pro-
gramm ist umfangreich dokumentiert und für Mac und Windows Betriebssysteme verfügbar. Yell
ist ein freies Programm und steht mit seinem Programmcode unter der GPL Lizenz der Allgemeinheit
zur Verfügung.
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Der 3D-∆PDF Ansatz wurde anhand der diffusen Streuung von vier Kristallen getestet. Im Fall
der komplexen intermetallischen Verbindung hP386-Al57,4Cu3,5Ta39,0 war es aufgrund der Qual-
ität der experimentellen Daten nicht möglich quantitative diffuse Streuprofile zu extrahieren. Die
beobachtete diffuse Streuung konnte jedoch mit einem aus der Interpretation der mittleren Struk-
tur abgeleiteten Fehlordnungsmodell qualitativ reproduziert werden. Die diffuse Streuung von
Ge4Bi2Te7, Tris-t-butyl-1,3,5-benzol Tricarboxamid und PbTe konnten ebenfalls erfolgreich unter-
sucht und deren Nahordnungsparameter mit Yell quantitativ verfeinert werden. Darüber hinaus
wurde am Beispiel von Tris-t-butyl-1,3,5-benzol Tricarboxamids die Zuverlässigkeit der Ergebnisse
von Einkristallrealstrukturanalysen basierend auf diffuser Streuung diskutiert. Es konnte gezeigt
werden, dass mit der 3D-∆PDF Methode eine exzellente Genauigkeit erzielt werden kann, die im
Wesentlichen von der Qualität der Datenreduktion, insbesondere der Korrektur systematischer ex-
perimenteller Fehler durch Hintergrundstreuung, Auflösungsfunktion und geometrischer Verzerrun-
gen, bestimmt wird.



Chapter 1

Introduction

In order to understand the properties of materials it is very important to know their crystal struc-
tures. If a material can be grown as a well-ordered single crystal, its structure can be fully de-
termined with conventional crystallographic methods based on Bragg scattering. However, many
crystals with interesting properties are disordered. For such crystals Bragg crystallography provides
only the average structure – a projection of the whole structure into a single unit cell.

The real structure of a crystal contains significantly more information than the average struc-
ture. Thermal displacements of all atoms in a crystal are not independent and typically reflect the
energy distribution of phonons which govern crystal dynamics. The composition of unit cells of
substitutionally disordered crystals is also correlated with the composition of the neighboring unit
cells. The careful analysis of subtle details of the real structure proved invaluable in explaining
important properties such as ferroelectricity [1], ion-conductivity [2], giant magneto-resistivity [3],
catalytic activity [4], anomalous lattice vibrations [5], behavior of host-guest systems [6], phasonic
flips in quasicrystals [7] and dynamics in proteins [8] to name just a few.

Information about the real structure can be extracted from the diffuse scattering of a diffraction
experiment. Diffuse scattering is one of the best techniques for probing the real structure of materials,
because it is sensitive to both static and dynamic ordering. Thanks to the availability of powerful
software [9] and the ease of data collection, diffuse scattering analysis has been widely adopted for
investigating short range order of powders and nano materials. Such analysis typically utilizes the
Pair Distribution Function, a Fourier transform of the total scattering from the sample. A number
of approaches summarized lated in section 2.3 also exists for single crystals, but due to various
limitations, no simple and fast routine method is currently available.

The aim of this thesis was to generalize the successful powder Pair Distribution Function method
to three dimensional single crystal data and to develop the program Yell, which could perform such
refinements. The program was implemented and successfully tested on diffuse scattering data from
the inorganic compounds Ge4Bi2Te7 and PbTe, the complex metallic alloy hP386-Al57.4Cu3.5Ta39.0
and the organic compound tris-t-butyl-1,3,5-benzene tricarboxamide.

The thesis is organized as follows. The chapter 2 provides the overview of diffuse scattering
analysis methods. The chapter 3 which includes the papers [10] and [11], describes the theory of the
3D-∆PDF refinement. The first paper introduces the 3D-∆PDF formalism and provides equations
to calculate diffuse scattering from individual interatomic pairs. The second paper expands the for-
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10 CHAPTER 1. INTRODUCTION

malism to pairs of molecules and describes the implementation of the program Yell for performing
diffuse scattering refinements. The chapter 4 presents the 3D-∆PDF analysis of diffuse scattering of
four single crystals: hP386-Al57.4Cu3.5Ta39.0, Ge4Bi2Te7, tris-t-butyl-1,3,5-benzene tricarboxamide
and PbTe. In addition, the section about diffuse scattering from tris-t-butyl-1,3,5-benzene tricarbox-
amide also assesses the accuracy of 3D-∆PDF refinements. The last chapter provides the comparison
between 3D-∆PDF and other methods for diffuse scattering analysis.

1.1 Authors declaration

The development of 3D-∆PDF least squares refinement and the theory described in [10] (sec-
tion 3.1), the implementation of the program Yell, and diffuse scattering analysis of the Tris-
t-butiltricarboxamide described in section 4.3 were performed by myself. Interpretation of diffuse
scattering from hP386-Al57.4Cu3.5Ta39.0, Ge4Bi2Te7 and PbTe was done in close collaboration with
Julia Dshemuchadse and Sandro Bigler, Philipp Urban and Oliver Oeckler, and Thomas Weber
respectively. My contribution in these projects can be summarized as follows:

hP386-Al57.4Cu3.5Ta39.0 I proposed and executed the calculation of the inter-structure differ-
ence electron densities map. I also performed diffuse scattering reconstructions and the calculated
the model diffuse scattering. Crystal synthesis, data collection, average structure solutions and
crystal chemical interpretations were done by Sandro Bigler and Julia Dshemuchadse.

Ge4Bi2Te7 I performed diffuse scattering data reduction, developed and implemented the input
file generator and helped with model building and refinement. Philipp Urban and Oliver Oeckler
prepared the crystal, collected diffuse scattering, refined the average structure, and finalized the
diffuse scattering refinement.

PbTe I helped to develop the model and to prepare the Yell input file. All other work was
done by Thomas Weber.



Chapter 2

Theory of diffuse scattering analysis

2.1 Diffuse scattering and the Three-Dimensional Pair
Distribution Function

Diffuse scattering is all scattering from a single crystal which is not Bragg scattering. Typically
diffuse scattering shows up in the shape of lines, planes or diffuse clouds between or underneath
Bragg peaks.

In kinematic approximation, the coherent scattering from a single coherently scattering crystallite
can be expressed as the Fourier transform of its electron density ρ(r) [12]:

F (h) = FT[ρ(r)]

Most of the diffraction experiments are performed using single crystals, which contain many
incoherently scattering mosaic blocks. The x-ray detector captures the average scattering intensity
from such mosaic blocks:

I(h) = ⟨F (h)F ∗(h)⟩ = FT[⟨ρ(r) ⋆ ρ(r)⟩]

here the brackets ⟨⟩ denote averaging over exposure time and scattering mosaic blocks, the star ⋆
denotes cross-correlation and the term ρ(r) ⋆ ρ(r) is the autocorrelation function of the electron
density.

The structure factor of the Bragg peaks is calculated as the Fourier transform of the average
structure:

FBragg(hkl) = FT [⟨ρ(r)⟩]

The diffuse scattering is the difference between total and Bragg scattering:

Idiffuse(h) = I(h)− IBragg(h) = I(h)− FBragg(h)F
∗
Bragg(h)

= FT[⟨ρ(r) ⋆ ρ(r)⟩]− FT[⟨ρ(r)⟩ ⋆ ⟨ρ(r)⟩] =
= FT[Ptot(r)− P (r)] =
= FT[P∆(r)]

11



12 CHAPTER 2. THEORY OF DIFFUSE SCATTERING ANALYSIS

The autocorrelation of the average structure P (r) = ⟨ρ(r)⟩ ⋆ ⟨ρ(r)⟩ is called Patterson function,
the average autocorrelation of the real structure Ptot(r) = ⟨ρ(r) ⋆ ρ(r)⟩ is called Pair Distribution
Function, the difference between the two P∆(r) = Ptot(r)−P (r) is called Difference Pair Distribution
Function, or 3D-∆PDF.

The Patterson function contains the information about interatomic vectors in the average struc-
ture. For each pair of atoms i and j the Patterson function will contain a peak at the interatomic
vector rij = rj − ri. The pair distribution function describes the interatomic vectors in the real
structure. Consequently, the 3D-∆PDF describes order in the crystal which is not captured by the
average structure. 3D-∆PDF can take both positive and negative values. Positive values mean that
corresponding interatomic vectors appear more frequently in the real structure than in the average
structure, while negative values mean the opposite.

2.2 Classification of disorder

It is useful to classify disorder according to its dimensionality. If the real structure of a disordered
crystal is well ordered along two dimensions, and disordered only along one dimension, the crystal
it is said to have 1D disorder. The crystal is said to have 2D disorder if its real structure is ordered
along one dimension and disordered along two dimensions. In the general case where real structure
is not periodic along any dimension, it is said to have 3D disorder [13].

The dimensionality of disorder can be easily deduced from the shape of diffuse scattering. If
the real structure is well ordered along some dimension with a periodicity vector p, the Fourier
transform of its electron density (and thus I(s)) will be concentrated in a set of sharp features that
meet the condition (ps) = n where n is integer1. Diffuse scattering from 1D disorder is present
as sharp streaks, diffuse scattering from 2D disorder forms layers, and diffuse scattering from 3D
disorder is present in as broad features (Fig. 2.2.1).

One more commonly used distinction is between static and dynamic disorder. Disorder is called
static if the atomic configuration of the crystal does not change in the course of the experiment,
otherwise it is called dynamic. The distinction corresponds to the formalism used for describing
disorder. Dynamic disorder may be described by lattice dynamics which is usually expressed in terms
of phonons. Static disorder implies substitutional disorder or static displacements and typically
involves discrete (present/absent) variables in the model, possibly along with continuos variables
describing relaxation. The border between static and dynamic disorder is sometimes vague since
the (pseudo-) elastic diffuse x-ray experiments do not deliver direct information about the static or
dynamic origin of disorder. Inelastic x-ray or neutron experiments are required to resolve this issue.

2.3 Methods of diffuse scattering analysis

There exist a number of approaches for diffuse scattering investigations, which in the following are
categorized in five groups.

1In the case of modulated structures the sharp features could be indexed by several modulation vectors.
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3D2D1D

Figure 2.2.1: Examples of diffuse scattering of different dimensionality. The red line marks the
crossections of the layers presented in the lower row. The 1D, 2D and 3D diffuse scattering come
from hP386-Al57.4Cu3.5Ta39.0 (section 4.1), tris-t-butiltricarboxamide (section 4.3) and PbTe (section
4.4) respectively.
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Direct modeling

Currently, the most widely used approach for diffuse scattering analysis employs computer simulation
of disordered crystals. First, a user defines a model of disorder in terms of direct space rules. Then
a representative sample of the crystal such that it fulfills the rules is equilibrated in the computer.
Finally, the resulting structure is Fourier transformed in order to obtain the model diffuse scattering,
which is then compared to the experimental data. The parameters of the model can be adjusted to
obtain the best fit between the model and the experiment.

Typically the modeling employs Monte-Carlo (MC) simulations. The adjustment of the param-
eters is performed using least squares refinement [14] or, more frequently, using sophisticated global
minima finding algorithms like differential evolution [15] or swarm minimization [16], which are sta-
ble in the presence of sampling noise in diffuse scattering caused by the limited size of the calculated
model.

The direct modeling approach is very flexible and allows to investigate any kind of disorder.
The approach has two drawbacks, however. First, it requires one to guess a model that correctly
describes the disorder at hand. Construction of such models is based on the shape and distribution
of diffuse scattering and requires expert knowledge and significant experience from the user. Second,
the refinements are computationally very demanding. Though they can be easily parallelized on a
supercomputer [16], refinements sometimes require weeks of wall-clock time to converge.

There exist a number of packages which can perform direct modeling. The most widely used it
the program DISCUS [17].

Reverse Modeling

Another approach, called Reverse Monte-Carlo (RMC) simulation, is similar to MC, but utilizes
experimental diffuse scattering instead of structure related rules for building the model crystal.
The algorithm starts with a random model which represents the average structure of a crystal and
introduces random changes to the model trying to minimize the difference between calculated and
experimental diffuse scattering.

This approach is flexible and converges much quicker than MC refinements. However, RMC
models are significantly overparameterized and prone to fitting experimental artifacts along with
true diffuse scattering signal. To avoid this, RMC models typically include additional constraints
that prevent simulation of unphysical crystals.

RMC simulations can be performed e.g. in the programs RMCProfile [18], RMC++ [19] or
DISCUS [17].

Normal mode analysis

Diffuse scattering from lattice vibrations (thermal diffuse scattering) can be calculated on the basis of
phonon dispersion curves [20], which can be obtained from ab-initio calculations or inelastic neutron
or x-ray scattering. The lowest part of acoustic branches, which is responsible for the majority of
thermal diffuse scattering could also be obtained from mechanical properties of the crystal [1].

Whether it is possible to reconstruct dispersion curves from diffuse scattering alone, without
the requirement of complicated ab-initio modeling, remains an open research question. Despite the
very impressive study by Holt et. al. [21] which showed the possibility to refine the interatomic
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force constants directly from diffuse scattering in silicon, this method was not generalized to other
systems.

Analytical methods

Historically, diffuse scattering was analyzed by solving equations describing diffuse scattering analyt-
ically. Though relatively complicated to derive, they provide closed equations that describe diffuse
scattering. A number of simple examples are presented in the text book by Cowley [12], a more
recent example can be found in [22].

In the case of 1D disorder, a very general approach, which allows to calculate diffuse scattering
from any stacking fault model is derived by Treacy [23]. In this approach, the stacking sequence
is described as a Markov chain. The user provides the structure of all possible layers, the vectors
which describe possible stacking pairs of these layers and the corresponding stacking probabilities.
Then, a numerical algorithm can be used to calculate the diffuse scattering from such a model. Such
calculations can be performed in the program DIFFaX [23], least square refinement against powder
scattering can be performed in program DIFFaX Plus [24].

In the case of 2D and 3D disorder, a different approach may be employed. The real structure
of the crystal is separated in two parts: the average structure and the local deviations from the
average structure. The average structure gives rise to Bragg peaks, while the autocorrelation of
the deviations from the average structure are responsible for diffuse scattering. Since in disordered
crystals correlations decay quite quickly, it is possible to express diffuse scattering as finite series
over various short range order correlations. A very extensive research showing the form of diffuse
scattering from many different point and extended defects can be found in the book by Krivoglaz
[25].

A very similar approach is utilized by the Warren-Cowley formalism [26] which is usually em-
ployed to describe disordered solid solutions with simple average structures. This formalism intro-
duces two types of short-range order parameters: correlation in occupancies of disordered sites and
the so-called size-effect, the relaxation of the neighboring atoms around mixed positions. Diffuse
scattering resulting from such correlations can be calculated using the equations derived by using the
first terms of Taylor expansions. The approach is computationally very efficient and is well suited
for performing refinements (an example can be found in [27]), however no general purpose software
for performing such calculations is currently available.

Powder pair distribution function

If single crystal experiments are not possible the local structure of a sample can be investigated
using the powder pair distribution function (1D-PDF) method. The 1D-PDF is similar to Rietveld
refinement, but considers not only Bragg scattering but also diffuse scattering. The refinement is
typically performed in real space against the radial distribution function, i.e. the Fourier transform
of total powder scattering.

1D-PDF is a well established [28] method, which shares all the advantages and disadvantages of
powder methods. On the one side, it can be applied to a wide range of samples including crystalline,
amorphous and liquid materials. The data collection is fast and simple and can be used for high
throughput experiments. On the other side, powder data provides access only to the spherical
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projection of the pair distribution function. Thus, the signals from pairs with similar distances, but
different directions of interatomic vectors overlap. The amount of overlapped peaks quickly increases
as |r|2 making interatomic vectors beyond ∼10Å hard to interpret.

1D-PDF refinements can be performed e.g. in the program PDFFIT [9].



Chapter 3

3D-∆PDF refinement method

3.1 Fundamentals of 3D-∆PDF analysis

The current paper introduces the 3D-∆PDF formalism on the level of individual interatomic pairs. It
shows how to describe short range ordering in terms of three correlations: substitutional correlation,
size effect and atomic displacements correlation. The fingerprints of short range correlations are
presented in both PDF and diffuse scattering space.

The printed version of article contains a small error in equation (9): it should read fn(h) instead
of f∗

n(h). The correct version is thus:

Idif (h) =

cryst∑
Ruvw

cell∑
mn

{pmn
uvw exp(−hTβmn

uvwh)

cos[2πhT (Ruvw + rmn + ūmn
uvw)]

−cmcn exp[−hT (βaver
m + βaver

n )h]

cos[2πhT (Ruvw + rmn)]}fm(h)fn(h)

The above equation is applicable for real atomic form factors at wavelengths far from the ab-
sorption edges and for molecular form factors of centro-symmetric molecules. In cases where the
imaginary components of form factors cannot be neglected, the equation (8) should be used:

Idif (h) =

cryst∑
Ruvw

cell∑
mn

[pmn
uvw exp(−hTβmn

uvwh) exp(2πihū
mn
uvw)

−cmcn exp[−hT (βaver
m + βaver

n )h]

×f∗
m(h)fn(h) exp[2πi(Ruvw + rmn)h]

Note that equations (7) and (8) also contain a small error. The terms fmf∗
n(h) should read

f∗
mfn(h).
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Abstract. Theory and principles of the three-dimensional
pair distribution function analysis of disordered single
crystals are introduced. The mathematical framework is
presented and the appearance of pair distribution function
patterns is discussed on the examples of some basic disor-
der models. It is further demonstrated how pair distribu-
tion function maps are affected by typical experimental
problems. Approaches for a better understanding of such
effects and strategies for a proper handling of artifacts in
diffuse scattering experiments are proposed.

1. Introduction

In the recent years the pair distribution function analysis
of powder samples (powder PDF) has become a popular
tool for investigating disordered structures. The powder
PDF is the Fourier transform of the total X-ray or neutron
powder diffraction pattern of a sample and provides a di-
rect measure for the real interatomic distances jrj in a ma-
terial. Moderate experimental requirements, straightfor-
ward data evaluation procedures and availability of
powerful software [6, 2] make the powder PDF a perfect
tool for routine investigations of local structures, provided
that the problem at hand does not exceed a certain com-
plexity. Limitations are mainly due to the powder specific
angular projection of the PDF densities, which makes in-
teratomic vectors of similar length indistinguishable even
if their spatial orientations differ significantly. Further-
more, the frequency of powder PDF peaks increases with
jrj2 and therefore problems quickly become unmanageable
if the interatomic vectors of interest are getting long.

PDFs from single crystals (3D-PDF) may be calculated
as the Fourier transform either of the total single crystal
diffraction pattern (total 3D-PDF) or of the diffuse scatter-
ing alone (3D-DPDF). In general, 3D-PDF investigations
are experimentally more challenging than powder experi-
ments, because high quality three-dimensional diffraction
data sets need to be collected. On the other hand most of

the problems inherent to the powder PDF method may be
overcome: the full 3D information about interatomic vectors
is preserved and the peak frequency is approximately con-
stant as a function of jrj. In the case of 3D-DPDFs the num-
ber of significant peaks per volume even decreases with in-
creasing distances. 3D-PDF methods were successfully
applied to a series of disorder problems that are difficult to
tackle with traditional methods like Monte Carlo modeling.
In particular disorder in quasicrystals was studied with 3D-
PDF methods. Investigations cover phononic and phasonic
disorder in an Al70Co12Ni18 decagonal quasicrystal [3, 4],
as well as temperature dependent studies of structural disor-
der in the same compound [14]. The atomic structure of dis-
ordered clusters in the decagonal compound Al65Cu20Co15

was recently identified and refined in [9]. 3D-PDF methods
are, however, by no means restricted to quasiperiodic com-
pounds, but may equally well be applied to disordered peri-
odic structures [1, 8].

This paper is intended to introduce the basic concepts
and properties of the total 3D-PDF and the 3D-DPDF
methods. Application to real world examples is beyond
the scope of this paper and will be presented in forthcom-
ing publications.

2. Theory

2.1 Definition

In the following we will present the mathematical frame-
work for the 3D-PDF theory. A similar approach was pro-
posed e.g. in [16], which, however, focused on the de-
scription of diffuse scattering intensities. Here we will
introduce a slightly different notation that more empha-
sizes total 3D-PDF and 3D-DPDF aspects.

In analogy to the powder PDF method the total 3D-
PDF is defined as the Fourier transform of the total scat-
tering from a single crystal:

PtotðxÞ ¼ FThItotðhÞi : ð1Þ

PtotðxÞ is also called the autocorrelation function of the
real crystal, ItotðhÞ are the properly corrected total scatter-
ing intensities from a single crystal diffraction experiment,
FT stands for the Fourier transformation and h i denotes
intensity averaging over time and over all coherently scat-
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tering volumes in a sample. In the following all vectors
are expressed in dimensionless fractional lattice units, if
not stated otherwise. For sake of simplicity we will ignore
special experimental effects like anomalous, inelastic or
multiple scattering and, without loss of generality, we will
only use notations related to X-ray diffraction. The auto-
correlation function of a crystal may be written as

PtotðxÞ ¼
Pcryst

MN
rMðxÞ $ rNð%xÞ $ hdðx% xMNÞi : ð2Þ

The double summation runs over all atoms in the crystal,
rðxÞ is the electron density of an atom at the origin of the
crystal’s coordinate system, xMN is the vector between the
atoms M and N, dðxÞ is the Dirac function and the aster-
isk symbolizes the convolution operation. This general ex-
pression is valid for crystalline and non-crystalline materi-
als. Crystals are built of unit cells and have an average
structure, so that we can write

PtotðxÞ ¼
Pcryst

MN
rMðxÞ $ rNð%xÞ $ dðx% Ruvw % rMNÞ

$ hdðx% uMNÞi ; ð3Þ

where Ruvw is the lattice vector between the unit cells oc-
cupied by the atoms M and N, and uMN is the difference
between the real vector xMN and the average structure re-
lated vector ðRuvw þ rMNÞ. In a next step the double sum-
mation is no longer performed over all atoms in the crys-
tal, but over all atomic sites1 m and n within the average
unit cell. We further average over all interatomic vectors
connecting atoms that are occupying the sites m and n in
unit cells separated by a same lattice vector Ruvw. The ex-
pression for the total 3D-PDF then becomes

PtotðxÞ ¼
Pcryst

Ruvw

Pcell

mn
pmn

uvwrmðxÞ $ rnð%xÞ

$ dðx% Ruvw % rmnÞ $ hdðx% umn
uvwÞi ; ð4Þ

where pmn
uvw is the joint probability to simultaneously find

an atom at site m in one unit cell and another atom at site
n in a unit cell separated by Ruvw. The term hdðx% umn

uvwÞi
is the probability density distribution of the random vari-
able umn

uvw, which represents the difference between the real
and the average distance of atoms occupying sites m and n
that are uvw unit cells apart. For a chemical understanding
it is often more convenient to express the pair correlations
in terms of conditional probabilities, which are defined as
pmn

uvw ¼ cmpuvwðn j mÞ ¼ cnp!uu!vv!wwðm j nÞ, where cm and cn are
the average site occupation factors of atomic sites m and
n, respectively. The term puvwðn j mÞ denotes the condi-
tional probability that a site n is occupied, provided that
the uvw unit cells separated site m is also occupied. The
definition of puvwðm j nÞ is analogous.

The Fourier transform of the Bragg scattering is well-
known as the Patterson function, which is the autocorrela-
tion function of the average structure of a crystal. It can
be described by averaging Eq. (4) over all lattice vectors.
As a consequence, each atomic site m will be filled with a
probability cm, even if the results would lead to unphysical
interatomic vectors. The joint occupational probability of
every pair of average atoms is equal to the product of the
occupancies of the individual atoms, i.e. pmn

uvw ¼ cmcn and
the distributions umn

uvw will split into two independent distri-
butions of um and un. The full formula for describing the
Patterson function is

PPatðxÞ ¼
Pcryst

Ruvw

Pcell

mn
cmcnrmðxÞ $ rnð%xÞ

$ dðx% Ruvw % rmnÞ $ hdðx% umÞi $ hdðx% unÞi :
ð5Þ

Typically, the average structure is well known before the
real structure gets investigated. For a better understanding
of local order phenomena it is therefore favorable to focus
on the deviations from the average structure, i.e. to ana-
lyze PDðxÞ ¼ PtotðxÞ % PPatðxÞ. In reciprocal space this
quantity is represented by the diffuse scattering
IdifðhÞ ¼ ItotðhÞ % IBraggðhÞ. The difference between Eqs.
(4) and (5) yields:

PDðxÞ ¼
Pcryst

Ruvw

Pcell

mn
½pmn

uvwhdðx% umn
uvwÞi

% cmcnhdðx% umÞi $ hdðx% unÞi(
$ rmðxÞ $ rnð%xÞ $ dðx% Ruvw % rmnÞ : ð6Þ

The corresponding diffuse scattering intensity is the Four-
ier transform of Eq. (6):

IdifðhÞ ¼
Pcryst

Ruvw

Pcell

mn
½pmn

uvwhexp ð2pihumn
uvwÞi

% cmcnhexp ð2pihumÞi hexp ð2pihunÞi(
fmðhÞ f *nðhÞ exp ½2pihðRuvw þ rmnÞ( : ð7Þ

In cases where the expressions in angle brackets may be
approximated by Gaussians we can write
hexp ð2pihuÞi ¼ exp ½%2p2hðhuÞ2i( ¼ exp ð%hTbhÞ (see
[10]), where b is a matrix representing dimensionless
atomic displacement parameters (ADPs). The components
of b are defined as bij ¼ 2p2a*ia*jUij, where Uij are the
frequently used ADPs in units of ðlengthÞ2 and a*i and a*j
are the lengths of the i-th and j-th reciprocal space vec-
tors. Care has to be taken, however, if substitutional and
displacive disorder are correlated. In such cases the distri-
bution of umn

uvw may have a non-zero average and we ob-
tain hexp ð2pihumn

uvwÞi ¼ exp ð%hTbmn
uvwhÞ exp ð2pih!uumn

uvwÞ.
The variable !uumn

uvw indicates presence or absence of a so-
called size effect distortion, depending on whether it is
zero or not (see Section 3.3 for an example). In the har-
monic approximation we can write:

IdifðxÞ ¼
Pcryst

Ruvw

Pcell

mn
½pmn

uvw exp ð%hTbmn
uvwhÞ exp ð2pih!uumn

uvwÞ

% cmcn exp ð%hTðbaver
m þ baver

n ÞhÞ(

) fmðhÞ f *nðhÞ exp ½2pihðRuvw þ rmnÞ( : ð8Þ
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1 An atomic site is defined as a placeholder for a specific element
that occupies this position with a certain probability. The atom be-
longing to this site may rest on its ideal position or it may be dis-
placed following a distribution function. It is important to note that in
the case of substitutional disorder an atomic site needs to be defined
for each of the elements that share an average position. The total
number of atomic sites per unit cell therefore equals to the length of
the atom list required for defining an average structure, if the symme-
try of the crystal is represented in space group P1.



where the matrix bmn
uvw describes the joint probability dis-

placement densities of atoms occupying sites m and n that
are separated by an average vector ðRuvw þ rmnÞ, while
baver

m and baver
n are the space and time averaged ADPs of

the sites m and n, respectively. After considering centro-
symmetry and applying some simple mathematical manip-
ulations Eq. (8) may be expressed without complex expo-
nential terms as

IdifðxÞ ¼
Pcryst

Ruvw

Pcell

mn
fpmn

uvw exp ð%hT bmn
uvwhÞ

cos ½2phðRuvw þ rmn þ !uumn
uvwÞ(

% cmcn exp ½%hTðbaver
m þ baver

n Þ h(

cos ½2phðRuvw þ rmnÞ(g fmðhÞ f *nðhÞ :
ð9Þ

2.2 Properties

Both, the total 3D-PDF and the 3D-DPDF are not periodic
in the presence of disorder. The symmetry must therefore
not be described by a space group, but by a Laue point
group having the same symmetry as the total diffraction
pattern or the diffuse scattering, respectively. Laue symme-
try of Bragg and diffuse scattering are often identical, but
they may differ in special cases [18, 13].

The 3D-DPDF provides information about features of
the real structure that are not represented by the average
structure. Positive 3D-DPDF values mean that the prob-
ability of finding scattering densities separated by the cor-
responding vector is higher than in the average structure
and negative values indicate lower probabilities.

Using the 3D-DPDF for analyzing disorder instead of
the total 3D-PDF is advantageous for several reasons.
% The number of peaks in PDF space gets smaller,

because only interatomic vectors having different
real and average structure properties contribute to
the 3D-DPDF. This excludes all atoms that are fully
ordered to a good approximation as well as atomic
pairs that are completely uncorrelated, e.g. because
they are separated by large distances [8].

% With the elimination of Bragg intensities one also
removes any associated systematic and statistical er-
rors at the same time. This is expected to signifi-
cantly enhance the quality of the local structure in-
formation, since the integral errors of Bragg
intensities are often of a same magnitude or even
stronger than the integral intensities of diffuse scat-
tering.

% The higher contrast of 3D-DPDF maps allows quali-
tative and semi-quantitative conclusions about the
underlying disorder problem just by a visual inspec-
tion of the patterns [8, 14].

An important feature, which may be directly extracted
from the 3D-DPDF pattern, is the correlation length of
local order. It is measured from the longest significant 3D-
DPDF vectors and provides the information how far and
along which direction a local structure property may affect
its environment.

The magnitudes of 3D-DPDF peaks essentially depend
on the strength of pair correlations, on the product of the
scattering power of the corresponding atomic pairs, on the
contrast between the average and the real structure and on
the multiplicity of the interatomic vectors. In general, the
highest multiplicity is found for 3D-PDF peaks separated
by lattice vectors, as the multiplicity of such vectors
equals to the number of atomic sites per unit cell.

A further feature of the 3D-DPDF is that its origin
peak may be directly calculated from the known average
structure. It represents all interatomic vectors with length
zero, i.e. m ¼ n and Ruvw ¼ rmn ¼ 0. Since any atom is
perfectly ordered with respect to itself we can write:
pmm

000 ¼ cmp000ðm j mÞ ¼ cm and umm
000 ¼ 0. The origin peak

may thus be calculated as:

Porigin
D ðxÞ ¼

Pcell

m
½cmdðxÞ % c2

mhdðx% umÞi

$ hdðx% umÞi( $ rmðxÞ $ rmð%xÞ ; ð10Þ

i.e. all quantities required for calculating the 3D-DPDF
origin peak are available from the average structure. This
property provides a unique link between the average struc-
ture and the 3D-DPDF map, which was lost after diffuse
and Bragg scattering were separated. An important appli-
cation is the determination of a proper scale factor for
diffuse scattering and PDðxÞ maps of a model (see below).

From Eqs. (6) and (8) we know that the 3D-DPDF and
its corresponding diffuse scattering may be described by
the same set of parameters and therefore both, reciprocal
space and PDF space oriented modeling, are likewise fea-
sible. According to Parseval’s law the following identity
holds in the case of discrete Fourier transforms:
PK%1

i¼0
jPobs

D ½i( % Pcalc
D ½i(j

2 ¼ 1=K
PK%1

j¼0
jIobs

dif ½j( % Icalc
dif ½j(j

2, where

K equals to the number of grid points. Apart from this
constant factor the unweighted c2 values of the model are
the same in PDF and reciprocal space and therefore least-
squares refinements are expected to lead to exactly the
same results independently of the reference space. A major
difference, however, is found in the ability for masking or
weighting specific features. Experimental artifacts like
beam-stop shadow, parasitic scattering, saturations etc. are
easily masked in reciprocal space and statistical errors are
also more easily considered if refinements are done
against diffuse scattering data. Refinements in PDF space
on the other hand allow selective modeling of structural
features. It was shown in [9] that this feature may signifi-
cantly reduce the complexity of a given problem.

3. Fingerprints of local order phenomena

In the following we will demonstrate the impact of some
basic disorder models on the appearance of single crystal
PDF maps. For sake of simplicity the example structure
will be two-dimensional. Correspondingly, the resulting
PDFs will be called 2D-PDF or 2D-DPDF. The findings
and discussions, however, may be straightforwardly trans-
ferred to three-dimensional space.
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3.1 Displacive disorder

The model structure is a chess board like arrangement of
atoms A and B in the (non-standard) plane group c4mm.
The scattering power of B is assumed to be twice as
strong as the one of A and the average composition of the
compound is AB. For our numerical calculations we used
the atomic form factors of Al and Fe, respectively. The
lattice constant a is defined to be 5 Å. For the displacive
disorder model we assume absence of any substitutional
disorder and all displacements are defined to be harmonic
and isotropic with Uiso ¼ 0:05 Å2, i.e. bij * 0:0395 if
i ¼ j, and zero in all other cases. The 2D-DPDF map is
most easily obtained as the Fourier transform of the dif-
fuse scattering calculated from Eq. (8), which in the case
of pure displacive disorder in a two-dimensional structure
simplifies to:

IdifðhÞ ¼
Pcryst

Ruv

Pcell

mn
½exp ð%hTbmn

uv hÞ % exp ð%hT2baverhÞ(

fmðhÞ f *nðhÞ cos ½2phðRuv þ rmnÞ( : ð11Þ

In the first example all displacements are independent of
each other, corresponding to the real structure that has
the highest entropy compatible with the Bragg intensities.
In such a case we obtain bmn

uv ¼ 2baver, except for
bmm

00 ¼ bnn
00 ¼ 0, because a real atom is never displaced

with respect to itself. Consequently, Eq. (11) further sim-
plifies to

IdifðhÞ ¼
Pcell

m
½1% exp ð%hT2baverhÞ( jfmðhÞj2 : ð12Þ

The diffuse scattering and the corresponding PDF maps
are shown in the top row of Fig. 1. Intensities are zero at
the origin of reciprocal space and increase continuously
with increasing distance. The decrease of the intensities at
large vectors is caused by the atomic form factor. In the
case of neutron experiments, where the atomic scattering
power is constant as a function of reciprocal space coordi-
nates, the diffuse scattering would converge to a maximum
value at large scattering angles. The 2D-DPDF is obtained
as the Fourier transform of the diffuse scattering and we
observe a relatively narrow signal at the origin, which has
a so-called Mexican hat shape: high densities at the origin
are enclosed by a ring of negative densities. The integral
of the 2D-DPDF is zero as it is true for any other strictly
displacive disorder model. At larger distances there are no
signals visible because the displacements are uncorrelated
and cannot be distinguished from the average correlations.
The Mexican hat profile of the peak can be explained by
the fact that the distance of an atom to itself is always
zero. Therefore, a distance of zero is more likely to be
observed in the real than in the average structure. On the
other hand any distance of an atom to itself having a
length larger than zero is never present in a real structure,
giving rise to negative DPDF intensities around the posi-
tive peak at the origin. The observation that the positive
peak is broader than a d-function, as it would be expected
from our argumentation, is due to the fact that electron
densities of the atoms have non-zero finite widths, which
broaden the PDF signals.

In a next step we allow negative correlations between
the displacements, i.e. next neighboring atoms tend to
move along anti-parallel directions. The diffuse intensity
of this model is described by Eq. (11). In our example the
values of bmn

uv are defined by the equation

bmn
uv ¼ 2baver½1% smn exp ð%jRuv þ rmnjÞ( ; ð13Þ

where smn ¼ þ1 if m and n are occupied by same ele-
ments, otherwise it equals %1. Any other parameters re-
quired in Eq. (11) are available from the average structure.

The resulting diffuse scattering and PDF patterns are
shown in the middle row of Fig. 1. The diffuse scattering
condenses around the Bragg positions and the envelope of
the strong diffuse maxima is very similar to the diffuse
scattering from the uncorrelated model. In 2D-DPDF
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Fig. 1. Diffuse scattering and 2D-(D)PDF patterns of the displacive
disorder models described in the text. Representations of diffuse and
PDF maps follow conventional grey-scale schemes. In the case of
diffuse scattering zero intensities are white, while strong intensities
are shown in black. In the PDF space negative densities are shown in
black, positive values are white and the zero level is in medium grey.
On the left hand side of the PDF maps 2D-DPDFs are shown in very
high resolution, while the lower right quarter shows the 2D-DPDFs in
resolutions corresponding to the visible diffuse scattering in the left
column, i.e. in a real space resolution of about 0.7 Å. The upper right
inset shows the total 2D-PDF pattern, i.e. the Fourier transform of
Bragg and diffuse scattering. The total 2D-PDF and the 2D-DPDF
color schemes are on different scales. In reality the total 2D-PDF
intensities are by far stronger than the 2D-DPDFs. The Bragg reflec-
tions are not shown in the diffraction patterns. According to the c-
centered lattice (a ¼ 5 Å) they would be visible at hþ k ¼ 2n.



space the origin peak is exactly the same as for uncorre-
lated displacements, because this peak is exclusively de-
fined by the average structure. Additional peaks are found
at positions corresponding to the average interatomic vec-
tors. As a consequence of the negative correlations of next
neighboring atoms, different elements tend to move along
opposite directions, while same elements prefer in-phase
displacements. Consequently, real vectors between same
elements have a high probability to be as long as the aver-
age vectors, leading to positive Mexican hat profiles. Dif-
ferent elements tend to avoid the average interatomic dis-
tances. Therefore DPDF intensities are negative at such
positions and the surroundings are positive, i.e. the corre-
sponding peaks look like negative Mexican hats. Because
of decreasing correlations, real and average displacements
of atomic pairs assimilate with increasing distances and
the magnitudes of the DPDF peaks decrease accordingly.

The model for positive displacive correlations is analo-
gously defined as the negative correlation model, but smn

is þ1 in all cases. The results are shown in the lower row
of Fig. 1. The diffuse scattering pattern is similar to the
negative correlation pattern, however, the weak diffuse
peaks in the former case become strong and vice versa. In
2D-DPDF space all peaks are forming positive Mexican
hat patterns, because all atomic pairs with shorter dis-
tances than the correlation length tend to move in phase.
Any other properties are the same as before.

In theory observation of a Mexican hat profile is a
clear indication of displacive disorder. In practice, how-
ever, truncation effects may also generate similar features,
if the experimental diffuse scattering considered for calcu-
lating PDF maps has a circular or a spherical envelope.
Careful examinations of the origin of Mexican hat style
features is therefore required.

3.2 Substitutional disorder

The average structure of the substitutional disorder model
is defined such that each site of the previous example is
mixed occupied by 0.5A and 0.5B atoms. Atoms are rest-
ing at their average positions so that all displacement vec-
tors u are zero. As a consequence of disorder the symme-
try independent Wyckoff positions of the 5 Å structure can
no longer be distinguished and the lattice transforms from
a c-centered to a primitive cubic lattice with a ¼ 2:5 Å.
The plane group symmetry becomes p4mm. The 2D-
DPDF space of such a model can be described as:

PDðxÞ ¼
Pcryst

Ruv

Pcell

mn
ðpmn

uv % 0:25Þ rmðxÞ $ rnð%xÞ

$ dðx% Ruv % rmnÞ ; ð14Þ

and the diffuse scattering expression becomes:

IdifðhÞ ¼
Pcryst

Ruv

Pcell

mn
ðpmn

uv % 0:25Þ fmðhÞ f *nðhÞ

) cos ½2phðRuv þ rmnÞ( : ð15Þ

In the case of randomly distributed A and B atoms any pairs
connected by a vector longer than zero have the joint occupa-
tional probabilities pAB

uv ¼ pBA
uv ¼ pAA

uv ¼ pBB
uv ¼ cAcB ¼ 0:25

and thus all of the corresponding terms in the summations of
Eqs. (14) and (15) become zero. The conditional probabil-
ities for the zeroth neighbor are p00ðA j AÞ ¼ p00ðB j BÞ ¼ 1
and p00ðB j AÞ ¼ p00ðA j BÞ ¼ 0. Consequently, pmn

00 equals
to 0.5 for m ¼ n and to zero otherwise. This simplifies
Eq. (14) to

PDðxÞ ¼ 0:25½rAðxÞ $ rAð%xÞ þ rBðxÞ $ rBð%xÞ
% rBðxÞ $ rAð%xÞ % rAðxÞ $ rBð%xÞ(

¼ 0:25½rAðxÞ % rBðxÞ( $ ½rAð%xÞ % rBð%xÞ( ;
ð16Þ

i.e. there is a single peak at the origin of PDF space,
which is just the autocorrelation function of the difference
between the electron densities of atoms A and B. The
diffuse scattering obtained from such a model is propor-
tional to the squared difference between the atomic form
factors: IdifðhÞ ¼ 0:25jfAðhÞ % fBðhÞj2. Diffuse scattering
and PDF maps of this model are shown in the top row of
Fig. 2.

In a next step occupational short-range order is intro-
duced. In our first model, chess board like arrangements
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Fig. 2. Diffuse scattering and 2D-(D)PDF patterns of the substitu-
tional disorder models described in the text. The grey-scale schemes
and the meanings of sections in the PDF maps are as defined in
Fig. 1. In reciprocal space the Bragg reflections are not shown. Ac-
cording to the p-lattice (a ¼ 2:5 Å) they would be visible at integer
h; k positions.



are formed on a local scale, i.e. there is a preference for
hetero-atomic pairs AB or BA in the case that interatomic
vectors r ¼ uaþ vb fulfill the condition uþ v ¼ odd
(based on the 2.5 Å sized average unit cell), otherwise
homo-atomic pairs AA or BB are more likely. The longer
the interatomic vectors become the weaker the pair corre-
lations get. For very long vectors the joint probabilities
converge to pAA

uv * pAB
uv * pBA

uv * pBB
uv * 0:25. For any given

distance d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2
p

we obtain the relations
pdðA j BÞ ¼ pdðB j AÞ ¼ 1% pdðA j AÞ ¼ 1% pdðB j BÞ. In
our model, an isotropic correlation field is defined as

pdðA j AÞ ¼ 0:5½1þ suv exp ð%dÞ( ; ð17Þ

where suv ¼ þ1 if uþ v ¼ even, otherwise suv ¼ %1.
The corresponding diffuse scattering and PDF patterns are
seen in the middle row of Fig. 2. The diffuse scattering
pattern shows broad maxima centered at positions
h; k ¼ n=2 (n ¼ odd), i.e. at positions where the Bragg
reflections are extinct due to the transformation of the
5 Å sized c-lattice of the displacive disorder model dis-
cussed above to the 2.5 Å p-lattice in the present exam-
ple. This behavior can be easily understood as the struc-
ture consists of domains having a local chess board
structure similar to the displacive disorder model. The
2D-DPDF pattern, however, allows a more direct interpre-
tation of the experimental results. Positive peaks are visi-
ble at positions uþ v ¼ even, while peaks are negative at
uþ v ¼ odd, i.e. the sign of the 2D-DPDF peaks directly
indicates the properties of suv. Again, the origin peak is
the same as in the example of uncorrelated disorder. The
profiles of the DPDF peaks are constant, but as a conse-
quence of decreasing correlations the integral densities of
the peaks decrease with increasing distances. The decay
of the densities directly reflects the properties of the expo-
nential term in Eq. (17).

The bottom row of Fig. 2 shows the case of positive
correlations where the atoms prefer being next to a same
element. The definition of the disorder model is the
same as for negative correlations, however, suv equals to
þ1 in all cases. Looking at the diffraction pattern we
find that the diffuse peaks have moved to the Bragg po-
sitions, because the translation vector in the finite or-
dered domains of the real structure is the same as the
average periodicity, i.e. 2.5 Å. In 2D-DPDF space the
information obtained is again more directly related to the
real structure properties: all peaks are positive, what di-
rectly reflects the definition of suv. Any other properties
like the width of the diffuse peaks and the decay of pair
correlations are equivalent to the negative correlation pat-
terns.

3.3 Size effect distortions

Displacive disorder stimulated by substitutional or occupa-
tional disorder is called a size effect. The corresponding
model discussed in this section is defined as follows: A
and B atoms are randomly distributed among the sites of
the 2.5 Å structure and the average displacements are
equivalent to the displacive disorder model defined above.
In addition the local interatomic distances are depending

on the neighboring elements. For this model Eq. (8) may
be rewritten as

IdifðxÞ ¼
Pcryst

Ruv

Pcell

mn
½pmn

uv exp ð%hTbmn
uv hÞ exp ð2pih!uumn

uv Þ

% 0:25 exp ð%hT2baverhÞ(

fmðhÞ f *nðhÞ exp ½2pihðRuv þ rmnÞ( : ð18Þ
AB distances are the same as in the average structure,
while AA distances are shorter and BB pairs are further
apart. In addition, we assume that the size effect induced
shifts are much smaller than the independent displace-
ments, which may be coming e.g. from thermal vibrations.
This assumption allows us to further accept a harmonic
approximation for the average displacements. From the de-
finition of our model it follows that the disorder para-
meters pmn

uv and bmn
uv are exactly the same as in the cases

of uncorrelated disorder discussed above, i.e.
pAA

00 ¼ pBB
00 ¼ 0:5, pAB

00 ¼ pBA
00 ¼ 0:0 and pmn

uv ¼ 0:25 for any
non-zero vector. The joint displacement probabilities fol-
low the relation bmn

uv ¼ 2baver, except for bmm
00 ¼ bnn

00 ¼ 0.
The only free model parameter is !uumn

uv . It is defined such
that AA pairs neighboring along a main axis, are shifted
by 0.01 Å along this direction and BB distances are 0.01 Å
shorter. The size effect shifts decrease by a half for each
additional step, i.e. it is 0.005 Å for the second next neigh-
bor, 0.0025 Å for the third, and so on. For sake of simplicity
we assume that size effect displacements are only effective
for elements neighboring along h100i directions.

The resulting diffuse scattering and PDF maps are seen
in Fig. 3. The diffuse scattering shows asymmetries with
respect to integer h; k values, which is a very typical pat-
tern for size-effect distortions [18]. The 2D-DPDF pattern
straightforwardly reflects the disorder model. Correlations
are only visible along the main axes. Similar to reciprocal
space the size effect is seen in strong asymmetries along
radial directions. For the present example the interatomic
vectors point to positive values if the distances are larger
than the average distances and negative for shorter separa-
tions. This observations can be directly interpreted such
that distances between pairs of strong scatterers are longer
than between pairs of weak scatterers.
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3.4 Full PDF vs. DPDF modeling

The total 2D-PDF patterns of the displacive and substitu-
tional disorder models discussed above are seen in the
upper right quarters of the PDF maps shown in Figs. 1
and 2. Differences between the models are hardly visible.
The reason for the similarity of the patterns is that the
total 3D-PDF is heavily dominated by the Patterson func-
tion so that grey-scale representations do not allow any
identification of particular disorder models. To demon-
strate the relations between the full PDF, the DPDF and
the Patterson function more clearly one-dimensional scans
are shown in Fig. 4. The data are based on the negatively
correlated substitutional disorder model discussed above,
which was selected because it shows the strongest contrast
between the real and the average structure. The dominance
of the Patterson function is clearly visible and nicely de-
monstrates the advantage of the DPDF over the total PDF
method. This example also emphasizes a significant ad-
vantage of the single crystal PDF method over the powder
PDF, where a proper separation of Bragg and diffuse scat-
tering is by far more complicated than in single crystal
diffraction patterns.

4. Pathology and remedies

In the following chapter we will discuss a few typical
experimental and modeling problems associated with the
investigation of disorder and we will propose approaches
for overcoming them. The examples are not exhaustive
and the problems are not specific for the PDF method.
The PDF space, however, is very well suited for a com-
prehensive understanding of the impact of corresponding
errors on the real structure properties derived from any
diffuse scattering studies, including Monte Carlo simula-
tions.

4.1 Reciprocal space resolution

The experimental point-spread function in a diffuse scat-
tering experiment is a convolution of various factors com-
ing from the instrument or from the sample. In the follow-
ing any experimental influence on Bragg reflection
profiles will be called a resolution effect. With this defini-
tion Bragg peak profiles become a direct measure of the
resolution function. Note that heavily strained samples and
paracrystals are excluded from our discussion, because the
Bragg peaks are broadened by disorder and therefore the
Bragg peak profiles do not exclusively represent the ex-
perimental resolution function. Note also that the determi-
nation of the average structure is usually not affected by
the resolution function, because it does not influence the
integral Bragg peak intensities. Resolution function deter-
mining factors include e.g. beam divergence, spectral
bandwidth of the beam, vibrations of the crystal or the
instrument, cross-section of the beam with the sample,
point spread function of the detector, step width in the
data collection scans, artifacts in reciprocal space recon-
structions and mosaicity of the sample. The complexity of
the problem makes straightforward solutions, as e.g. routi-
nely done in Rietveld powder refinements, difficult. To
demonstrate the impact of the various effects on the single
crystal PDF properties we roughly divided the resolution
effects into three categories.

First, a function is considered that broadens Bragg
peaks isotropically and uniformly. To a first approxima-
tion, most of the effects mentioned above belong to this
class. Mathematically, this effect can be described as a
convolution of a perfect diffraction pattern with a constant
profile function. According to the convolution theorem the
effect in 3D-PDF space is a multiplication of the true PDF
with the Fourier transform of the resolution function. If
we assume a Gaussian as a peak-shape function then its
Fourier transform is also a Gaussian. The larger a PDF
vector gets the more attenuated become the observed PDF
densities as a consequence of the resolution effect. Profiles
of the PDF peaks are (practically) not affected. The effect
is shown in Fig. 5, second row. Typical half widths of
Bragg reflections measured in synchrotron radiation ex-
periments are in the order of 10%3 "A

%1
(reciprocal space

units are defined as d* ¼ 2 sin ðqÞ=lÞ). In such cases the
true PDF intensities get damped by about 3.5% at a dis-
tance of 100 Å and by 50% at about 440 Å [15], i.e. only
long vectors are seriously affected. In typical in-house ex-
periments the reciprocal space resolution is in the order of
10%2 "A

%1
and thus significant effects are expected at about

one order of magnitude shorter distances. Resolution ef-
fects can be corrected in PDF space by dividing the ob-
served PDF maps with the Fourier transform of the resolu-
tion function. In general, no corrections are required if the
diffuse scattering features are by far broader than the reso-
lution function.

The other two effects considered are causing broaden-
ings of the peaks along radial or angular directions. The
resolution function is not constant, but increases linearly
with increasing distances from the origin of reciprocal
space. Radial resolution effects are usually coming from
the spectral width of the primary beam, while angular
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broadenings may be caused e.g. by the mosaicity of the
sample, by vibrations or by the data collection step width.
As seen in the third and fourth row of Fig. 5 the effects
are analogous in reciprocal and PDF space. In the case of
radially shaped resolution functions Bragg’s law trans-
forms the constant monochromator’s bandwidth Dl=l to a
constant Dd=d in PDF space leading to the radial broad-
enings that are increasing with increasing distances. The
angular resolution effects are also directly transformed
from one space to the other, since rotations of the coordi-
nate systems are covariant in real and reciprocal space.

There is no easy correction for such angular or radial
resolution effects, but the resolution function may be si-
mulated and applied to PDF or diffuse scattering model
maps by using numerical methods. If not considered in

diffuse scattering studies local atomic displacements will
get overestimated independent of the modeling technique
applied. Details will be discussed in forthcoming papers.

4.2 Separation of Bragg and diffuse data

In many cases separation of Bragg and diffuse scattering
is straightforward, because the signals are found in differ-
ent layers or lines. In other cases diffuse scattering is by
far broader than the Bragg profiles and interpolation of the
diffuse intensities beneath the Bragg scattering provides a
reasonable approximation to the real diffuse intensities.
More difficult situations are found if narrow diffuse max-
ima are exactly at or very close to the Bragg positions. In
such cases the true diffuse scattering can hardly be recon-
structed without providing additional information like the-
oretical profile functions. In the following we will propose
three possibilities for solving such problems.

First, a total 3D-PDF study would overcome the neces-
sity of separating Bragg and diffuse data. However, this
approach requires perfectly measured diffuse and Bragg
data at the same time – a task that is very challenging but
feasible [12]. Second, despite the fact that interpolations
may provide only rough approximations to the true diffuse
scattering, the diffuse scattering beneath the Bragg peaks
may be reconstructed using the so-called punch-and-fill
method as discussed in [3, 4]. The method uses a simple
interpolation algorithm for filling the gaps after elimina-
tion of Bragg peaks. It was shown that the resulting 3D-
DPDF patterns are reliable if only very short vectors are
considered, however, long PDF vectors may get heavily
biased by this approximation. Finally, optimization of a
3D-DPDF model could be done in reciprocal space by
applying zero weights to the Bragg scattering affected re-
gions as it is typically done in Monte Carlo refinements
(e.g. [17, 7, 11]). The consequences for the results ob-
tained are very similar to the punch-and-fill method. In the
case that the masked diffuse peaks are very narrow their
major Fourier components correspond to long vectors in
PDF space. By suppressing such experimental results, the
information about long 3D-DPDF vectors may no longer
be well defined. Independent of the modeling technique
used, any analysis of long distance correlations may there-
fore become unreliable, unless a correct model for the de-
cay of correlations is enforced.

4.3 Scale factor determination

The determination of a proper scale factor for a 3D-DPDF
model is not trivial after Bragg and diffuse scattering was
separated. In particular in the case of dominant substitu-
tional disorder, diffuse scattering and 3D-DPDF maps line-
arly depend on the pair correlation parameters pnm

uvw, i.e.
they fully correlate with the scale factor. A proper determi-
nation of the scale factor is therefore not possible without
providing additional information. Fortunately, the origin
peak of the 3D-DPDF map provides such a constraint. As
mentioned above the origin peak is independent of the dis-
order model and it can be calculated from the disorder
properties known from the average structure like ADPs
and site occupation factors. The scale factor is easily ob-
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Fig. 5. Impact of reciprocal space resolution effects on the PDF pat-
tern as described in the text. The top row shows a reference model of
a diffraction experiment that is free of resolution effects. For the sake
of clarity the examples are showing the resolution effects for Bragg
scattering and for the Patterson function only, but the results may be
straightforwardly transferred to diffuse scattering experiments. The
grey-scale schemes are as defined in Fig 1.



tained as the ratio of the experimental and calculated ori-
gin peaks. Any further pair correlation coefficients only
need to be determined relative to the origin peak and thus
the linear correlation between the scale factor the 3D-
DPDF gets resolved.

There are, however, some practical problems that may
bias a proper determination of the scale factor. It is a prop-
erty of the Fourier transformation that the short 3D-DPDF
vectors defining the origin peak are heavily affected by
broad scattering intensities. A careful handling of back-
ground scattering is therefore essential as typical sources
of background like electronic noise of the detector, air,
fluorescence or Compton scattering as well as scattering
from the crystal holder are smooth signals in most cases.
A separation of background and diffuse scattering is easily
done by interpolation, if the diffuse intensities are fully
condensed in features that are narrow at least along one
dimension like diffuse streaks or layers. In cases, where
parts of the diffuse signal are very broad along all direc-
tions, diffuse scattering and background scattering are dif-
ficult to distinguish, and, as a consequence, the scale fac-
tor would get biased by the background. This problem can
be minimized experimentally by using optimized setups
and modern detectors like the PILATUS [5], which is not
only free of intrinsic noise, but also allows suppression of
florescence scattering. From a modeling point of view the
problem can only be tackled, if additional constraints for
pair correlations beyond the zeroth neighbor may be ap-
plied, as e.g. in the case of molecules, where a series of
conditional occupational probabilities are often known to
equal to unity. Such additional information allows extend-
ing the volume in PDF space that may be predicted from
the average structure alone and make the scale factor de-
termination significantly less sensitive to experimental arti-
facts.

5. Conclusions

Single crystal based PDF analysis is a straightforward
method for analyzing disorder. Local order properties may
be directly accessed through the Fourier transform of the
full or the diffuse diffraction pattern. In the latter case the
local order features are visible with higher contrast and
they are less affected by experimental problems. A phase
problem, as it is well-known for the determination of the
average structure, does not exist, because the PDFs are
directly calculated as the Fourier transform of the scatter-
ing intensities. Many local structure properties of a disor-
dered material can be directly extracted from the single
crystal PDF patterns just by a visual inspection. The 3D-
(D)PDF patters provides direct information about the type
of disorder (e.g. displacive or substitutional disorder) pre-
sent in a structure and about the local properties of the
atoms involved, what is certainly the major advantage of
PDF methods over reciprocal space oriented investiga-
tions. The formulas for calculating diffuse scattering or
PDF maps from a PDF disorder model are perfectly suited
for least-squares refinements. A computer program for per-
forming such investigations is currently under develop-
ment.

Powder and single crystal PDF methods are comple-
mentary. The major advantages of powder diffraction
methods are that large single crystals are not required as
well as the relatively simple and very fast experiments,
which allow performing studies that cannot be done with
single crystals. Single crystal PDF analysis on the other
hand is to be preferred if complex local order needs to be
investigated or if interatomic correlations become very
long, even though collection of high quality diffuse scat-
tering is much more complicated than in the case of pow-
der experiments. For complex problems the by far better
resolution of PDF peaks in three-dimensional space allows
investigations of disorder problems that cannot be ana-
lyzed with powder diffraction techniques. The ability for
elimination of average structure features and the possibi-
lity for selectively modeling parts of the disordered struc-
ture as demonstrated in [9], extends the tool-box for hand-
ling even extremely complex problems. Such advanced
modeling techniques are much easier applied to single
crystal PDFs than to powder diffraction data.
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28 CHAPTER 3. 3D-∆PDF REFINEMENT METHOD

3.2 The program Yell

The following paper [11] describes the implementation of 3D-∆PDF method in the program Yell.
The first part shows how to apply the three fundamental correlations (size effect, substitutional and
displacement correlations) on the level of molecules and how to obtain their numerical values using
the least squares refinement procedure.

The second part discusses the syntax of Yell input file. The average UnitCell1 of the crystal is
described in terms of Variants and constituent atomic groups. Displacements of atoms and molecules
are defined in terms of Modes. Short range order parameters include SubstitutionalCorrelation,
SizeEffect and ADPCorrelation.

A very important implementation detail, the fast FFT-based algorithm for diffuse scattering
calculation is described in chapter 4.1. The appendix A presents the example input file on the basis
of a Warren-Cowley model of Fe46.5Ni53.5 refined by Jiang et. al. [29].

1Here and throughout the thesis typewriter font indicates the Yell commands, key-words or input filenames.
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Yell, a program for routine refinement of disorder models against single-crystal

diffuse scattering data, is presented. The analysis is based on the three-

dimensional delta pair distribution function (3D-�PDF) method, which

provides direct access to interatomic correlations in real crystal structures.

Substitutional, displacive and size-effect disorder models are covered. The input

file format supports flexible usage of arithmetic expressions for constraining

dependent parameter values. The program is designed to be run on desktop

computers. By using an efficient fast-Fourier-transform-based diffuse scattering

calculation algorithm, full least-square refinements of medium complexity

disorder models may be performed within minutes or hours, even if the

experimental diffuse scattering is represented by large and fine-sampled

reciprocal space volumes. The program is written in C++ and the source code

is distributed under the GPL licence. Binary distributions are currently available

for Mac and Windows operating systems.

1. Introduction
Knowing the local structure of disordered crystals is frequently

crucial for understanding their chemical and physical properties.

Examples include giant magnetoresistivity (Adams et al., 2000),

specific catalytic activity (Simoncic & Armbruster, 2004), atomic

diffusion paths in ion conductors (Ali et al., 2008) and the behavior of

host–guest systems (Weber et al., 2000). In diffraction experiments

the information about local order is found in the diffuse scattering.

With recent advances in X-ray sources and detector technology

(Henrich et al., 2009; Weber et al., 2008), the collection of high-quality

diffuse scattering data sets from disordered crystals has now become

relatively easy and fast. The availability of powerful software for

analyzing diffuse scattering, however, is strongly lagging behind the

current experimental possibilities.

In the past two decades direct space modeling techniques have

become popular tools for studying disorder in single crystals. The

methods include molecular dynamics (MD), Monte Carlo (MC) and

reverse Monte Carlo simulations, all of which simulate small volumes

of crystal structures that are supposed to be representative of the real

crystal. Such simulations can be performed with programs like

DISCUS (Proffen & Neder, 1997), ZODS (Chodkiewicz et al., 2013),

ZMC (Goossens et al., 2011) or Moldy (Refson, 2000). The techniques

are powerful but computationally very expensive, since the computer

models may comprise hundreds of thousands of atoms, which need to

be equilibrated and Fourier transformed. Although the use of

supercomputers allows significant acceleration by parallelization

(Michels-Clark et al., 2013), full refinements of medium complexity

problems may easily take days or even weeks of wall-clock time.

The powder-diffraction-based pair distribution function (PDF)

method follows a different approach for modeling real structure

properties of a disordered crystal. Instead of simulating a real crystal

structure, it extracts information about the pair correlations directly

from the Fourier transform of the powder diffraction pattern, which

reduces the computational demands significantly. In combination

with powerful software (Proffen & Billinge, 1999), it has been

successfully applied to a broad range of problems (Billinge, 2008).

The PDF method inherits advantages and disadvantages of the

powder diffraction method. It is experimentally much simpler and

faster than single-crystal investigations but is limited regarding the

complexity that can be analyzed. As a consequence of the spherical

projection of diffraction intensity, only the norm and not the direction

of interatomic vectors is directly represented in the experimental

data.

Recently, the three-dimensional PDF (3D-PDF) method was

introduced to extend the PDF approach to single-crystal applications

(Weber & Simonov, 2012). Key features of the 3D-PDF method are

preservation of the full angular information about interatomic

vectors and a significantly smaller degree of overlapping of PDF

signals. Both help to avoid numerical correlations between the model

parameters and allow easier separation of diffuse and Bragg scat-

tering compared to powder diffraction. The Fourier transform of the

diffuse scattering alone is called the 3D-�PDF (Schaub et al., 2007).

It provides information about features of the real structure that are

not represented on average. The idea of describing single-crystal

diffuse diffraction patterns directly in terms of pair correlations is

well established (Cowley, 1950; Welberry & Butler, 1995), but so far

general software for quantitative routine investigations of disorder in

single crystals has not been available. The 3D-�PDF modeling pro-

gram Yell, which is introduced in this paper, is intended to fill this gap.

2. The theory of the 3D-DPDF method

The theory of the 3D-�PDF method was described in detail by

Weber & Simonov (2012). Some basic concepts are briefly sketched in
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the following. The 3D-�PDF method is based on the separation of

diffuse and Bragg scattering:

3D-�PDF ¼ FTðIdiffÞ ¼ FTðItotal � IBraggÞ; ð1Þ

where FT symbolizes the Fourier transform operation. Once the

average structure has been determined from the Bragg intensities,

diffuse scattering may be calculated as the sum of signals from all

atomic pairs in the crystal:

IðhÞdiff ¼
Pcrystal

Ruvw

Pcell

mn

�
puvwmn expð�hTbuvw

mn hÞ exp½2�ihðRuvw þ rmn þ uuvwmn Þ�

� cmcn exp½�hTðbm þ bnÞh� exp½2�ihðRuvw þ rmnÞ�
�
f �mðhÞfnðhÞ; ð2Þ

where rmn ¼ rm � rn is a vector between the average positions of

atoms m and n within a unit cell, cn and cm are the average atomic

occupancies, bm and bn are the matrices of the average atomic

displacement parameters, fmðhÞ and fnðhÞ are the atomic form factors,

and Ruvw is the lattice vector between lattice points that are ðu; v;wÞ
unit cells apart. All variables with sub- and superscript notation ½uvwmn �
represent short-range-order parameters, which are not known from

the average structure but need to be quantified for describing the

short-range order in the crystal: puvwmn is the joint probability of finding

the atoms m and n separated by the vector Ruvw þ rmn, buvw
mn is a matrix

that describes the joint atomic displacement of atom n as seen from

atom m, and uuvwmn is the size effect parameter, which quantifies the

difference between the real and the average interatomic vector

between atoms m and n.

3. Definition and refinement of disorder models in Yell

The following section is intended to give an overview of how disorder

models are defined in Yell. A comprehensive description of all

features is found in the manual and a commented example of a simple

but complete input file is given in Appendix A.

3.1. Description of the average structure

The average crystal structure is expressed in a hierarchical manner:

the crystal consists of topological sites, which can be occupied by

chemical units, i.e. individual atoms or groups of atoms. Groups of

atoms represent ensembles, like molecules or clusters. Exclusive

occupancies of topological sites, as present in the case of substitu-

tional disorder, are expressed as variants, e.g.

In this example GdFeVoid site is occupied either by a gadolinium

atom, by a structural building block of two iron atoms, which is

aliased as iron molecule, or by a void. On average, each chemical

unit is present with the same probability of p ¼ 1=3. The sum of all

probabilities of the constituents of a Variant must be equal to 1. If a

site is under-occupied, the void must be listed explicitly. An atom is

defined by its element symbol followed by a multiplicity factor, three

fractional coordinates, and an isotropic displacement parameter or, as

shown in the example above, six anisotropic displacements para-

meters (ADPs).

Another example is the variant Fe3Si_site, which will be used

later on. It defines a site that is occupied by a mixture of iron (83%)

and silicon (17%):

3.2. Definition of chemical unit motions

Motions of atoms or groups of atoms are defined analogously to

normal mode analysis by

�ri ¼
P
j

vij�j; ð3Þ

where �ri is the displacement vector of an atom i, �j is an abstract

variable describing the amplitude of some collective motion of the

atoms and vij is the vector of the displacement of the atom i asso-

ciated with variable �j. The index j counts all abstract variables. Such

formalism can describe any motion of atomic groups including

translations, rotations, expansion/contraction and bending in linear

approximation. In Yell such collective motions are called modes.

Before being used, modes need to be defined as shown in the

following example of translational and rotational motions of the

iron molecule:

where iron molecule mode x is an alias for a collective motion of

the iron molecule along vector x, and the alias iron_molecule_

mode_ry represents a linear approximation of the rotation of the

iron molecule around an axis parallel to y passing through the

center of the molecule with the unit-cell coordinates (0; 0; 0).

3.3. Substitutional correlation

Substitutional correlation means that the occupancy of one site

depends on the occupancy of another site. To specify substitutional

correlations in Yell, two variants and a matrix of joint probabilities

need to be defined. If the two variants consist of j and k atomic groups

then the joint probabilities of a specific pair are expressed by a j � k

correlation matrix. For example, the correlation between the variants

Fe3Si site (two constituents) and GdFeVoid site (three consti-

tuents) is described by a 2 � 3 matrix:

The average structure imposes a set of restrictions on the joint

probabilities. For example, the sum of all joint probabilities involving

gadolinium p fe gdþ p si gd must be equal to the average occu-

pancy of gadolinium, i.e. 1/3. In general, the average structure

requires the sum of each column to be equal to the occupancy of the

corresponding element from the first variant and the sum of each row

to be equal to the occupancy of each element of the second variant.

These constraints make the last row and last column of the prob-
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ability matrix dependent. Given the upper-left independent part of

the correlation matrix, Yell can calculate the dependent part. Thus,

the previous example can be expressed in a nonredundant form as

follows:

The short version is especially convenient for the most common

case of binary disorder, where instead of four values the user needs to

provide only one.

3.4. Atomic displacement correlations

The second disorder type that can be refined by Yell is the corre-

lation of atomic displacements. These displacements are present in all

solids and typically manifest themselves in thermal diffuse scattering,

but they may also be of static origin.

Yell assumes that average displacements are harmonic and that

real structure displacement correlations follow a Gaussian distribu-

tion. The correlations are defined between pairs of modes. For

example, if the displacement along the a axis of the two iron mol-

ecules is correlated, it can be expressed as follows:

where ð1; 0; 0Þ indicates that the correlation is between two iron

molecules that are one unit cell apart along a, iron_molecule_

mode_x is the translational mode of an average iron molecule and cov

is the covariance of the two modes expressed in units of Å2.

The correlations could be more complicated; for example, a screw

correlation between two iron molecules would be defined as

where iron molecule mode x and iron molecule mode ry are the

translational and rotational modes of the iron molecule, and cov is

expressed in units of rad Å.

3.5. Size effect

The third type of correlation that may be analyzed with Yell is the

so-called size effect. It is observed if chemical disorder on one site

induces a displacement of a chemical unit on another site. Yell

supports any kind of size effect where the displacements can be

described by linear combinations of modes, including motions along

any directions and rotations.

The following example defines the relaxation of one iron molecule

along the a axis in the presence of another iron molecule:

where ampl is the numerical variable that describes the amplitude of

the displacement in Å.

3.6. Formulas

Yell supports definition of variables as arithmetic expression of

other variables. Expressions can include the operations þ� �=,

parentheses ðÞ, and the functions cos, sin, exp, log, sqrt, abs, mod

and pow. The use of the expressions is very powerful for reducing the

number of parameters that need to be refined. The following example

shows how a set of correlation parameters may be constrained to

follow an exponential decay, thus reducing the total number of

independent variables from six (i.e. c0 . . . c5) to two (i.e.

c0; decay constant):

Advanced programming tools like loops, subroutines and if state-

ments are not yet implemented in Yell.

3.7. Symmetry

Yell supports both space-group symmetry operators for expanding

the asymmetric unit of the average structure and Laue group

symmetry for the 3D-�PDF, which is defined by the diffraction

symmetry of the diffuse scattering pattern. The automatic restriction

of symmetry-related correlation coefficients and automatic determi-

nation of multiplicities of special positions are not yet implemented in

the current version of the software and have to be defined by the user.

3.8. Refinement

Yell provides both modeling and refinement options. In modeling

mode diffuse scattering and the 3D-�PDF are calculated from the

disorder model, while the refinement mode allows optimization of

parameter values through least-squares minimization.

The objective function to be minimized is

Rw ¼ P
wðIobs

diff � Icalc
diff Þ

� �2�PðwIobs
diff Þ2; ð4Þ

where Iobs
diff and Icalc

diff are the observed and calculated diffuse scattering

intensities, and w are the refinement weights of each data point. Note

that the refinement is done against diffuse scattering intensity and not

against the 3D-�PDF. In principle, refinements can be performed

equally well against real or reciprocal space data, since Plancherel’s

theorem guarantees that unweighted R factors are independent of the

choice of the space. Application of refinement weights, however,

makes the difference. Despite the fact that weighting in PDF space is

occasionally useful for filtering signals (Schaub et al., 2011), Yell

refines against the diffraction intensities, because this approach is

better at accounting for experimental errors or missing data. Also

note that, unlike powder PDF programs, Yell does not consider Bragg

scattering for reasons discussed by Weber & Simonov (2012).

Similarly to Bragg peaks, the diffuse signals are broadened by

experimental factors like beam divergence, wavelength dispersion,

the quality of a sample or the rotation angle per frame during data

collection. These factors are collectively called the resolution func-

tion of the experiment. The impact of the resolution function on the

results of a local structure determination can be ignored if the diffuse

scattering is significantly broader than the profiles of the Bragg peaks,

but may become significant if the diffuse signals are relatively narrow

(Weber & Simonov, 2012). Yell provides a simple approximation to

account for resolution effects. It is assumed that the resolution

function is uniform in reciprocal space, i.e. that each diffraction

feature is convoluted with the same kernel, independent of its reci-

procal space position. Using the convolution theorem, such a reso-

lution function can be efficiently applied by multiplying the 3D-

�PDF signals with the Fourier transform of the resolution function.

The approximate shape of the resolution function may be estimated

from profiles of unsaturated Bragg peaks.

Despite the fact that Yell’s least-squares refinements naturally

deliver the standard uncertainties (s.u.s) of refined parameters, we

recommend to use them with caution. The estimates take into
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account the effect of random errors in

experimental data under the assumptions

that systematic errors are negligible. In

typical diffuse scattering experiments this

assumption is not true. Also, the number of

experimental measurements, i.e. the number

of pixels used in the refinement, often

exceeds the number of model parameters by

many orders of magnitude. Such effects may

lead to artificially low s.u. values for the

refined parameters. We recommend to use

the reported s.u. values only for identifying

strong numerical correlations or parameters

that are weakly represented by the experi-

mental data, but not as a measure of the

accuracy of the refined parameters. The

extraction of reliable s.u. values from 3D-

�PDF refinements will be the subject of

further investigations.

The experimental information is provided

to Yell through several hdf5 formatted files

(http://www.hdfgroup.org/HDF5) containing

diffuse scattering intensity and, optionally,

refinement weights, a measured pixel mask

and resolution correction estimates. The background-corrected

diffuse scattering data set is expected to be prepared by the user on a

regular grid in the crystallographic coordinate system. Diffuse scat-

tering beneath Bragg reflections is expected to be interpolated, e.g.

using the punch-and-fill method (Kobas et al., 2005), or masked by

using zero weights. After the refinement, Yell outputs the calculated

diffuse scattering, the observed and experimental 3D-�PDF, and a

so-called delta–delta PDF or 3D-�2PDF, which is the difference

between the observed and experimental 3D-�PDFs.

4. Yell internals

4.1. Fast diffuse scattering calculation algorithm

Yell provides the choice of two algorithms for calculating the

diffuse scattering intensities from a disorder model. One option is to

use equation (2), which is precise but very slow. As an alternative,

Yell implements an algorithm for the fast calculation of diffuse

scattering, which is very similar to the one used by Terwilliger (2011).

It is a variation of the fast Fourier transform (FFT)-based method of

the structure factor calculation of Sayre (1951) and Ten Eyck (1977).

In our algorithm (see Fig. 1) the 3D-�PDF map is constructed by

summing up small bunches of single atomic pair 3D-�PDF contri-

butions. The interatomic vector ruvwnm ¼ Ruvw þ rmn of a pair m and n is

split into its grid component ruvwmn;g, which fits to the pixel repre-

sentation of the PDF map, and a residual �ruvwmn;g ¼ ruvwmn � ruvwmn;g. Then,

a sample box is assigned to ruvwmn;g. The sample box volume is typically

some orders of magnitude smaller than the full PDF map but large

enough to cover all significant contributions from the correlation

function of the electron densities of the atoms m and n, i.e. a few

ångström along each dimension. With decreasing sample box size the

algorithm becomes faster but less precise. The content of the sample

box is calculated from the structure model and the atomic form

factors via FFT. The intermediate reciprocal space intensities are

multiplied by a phase factor expð2�ih�ruvwmn;gÞ to account for the shift

�ruvwmn;g. The content and position of a single sample box is therefore

calculated as

3D-�PDFsðx� ruvwmn;gÞ ¼ FFT
�n

puvwmn expð�hTbuvw
mn hÞ expð2�ihuuvwmn Þ

� cmcn exp½�hTðbm þ bnÞh�
o

expð2�ih�ruvwmn;gÞf �mðhÞfnðhÞ
�
: ð5Þ

This procedure is repeated for each atomic pair and the results are

summed up in the full PDF map. Finally, the diffuse intensities are

obtained as the inverse FFT of the PDF map.

Sampling in the limited volume of direct space yields a significant

speedup in the computation of 3D-�PDF as compared to the direct

application of equation (2) but introduces approximation errors,

which affect both 3D-�PDF intensity and truncation ripples (typical

for low-resolution experiments) as shown in Fig. 2.

The approximation error has a distinctive wave-like shape (see

Fig. 3) in reciprocal space. The error typically increases towards large
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Figure 1
(a) A sketch of our FFT-based diffuse scattering calculation algorithm. The complex scattering signal ÎIs from an
interatomic pair is sampled on a rough grid. Then, using FFT, it is transformed into the 3D-�PDFs box, which is
added to the full 3D-�PDF with an offset of ruvwmn;g relative to the origin of the 3D-�PDF map. The loop is
repeated for each interatomic pair. In the last stage the 3D-�PDF is transformed into the diffuse scattering map
Idiff by FFT. (b) Each interatomic vector ruvwmn is split into two components: the vector to the closest grid point ruvwmn;g

and a difference �ruvwmn;g. The calculation box is constructed around ruvwmn;g. Owing to the requirements of the FFT,
the box has an even number of reflections along each dimension. The central pixel thus appears to be offset from
the actual center of the box by half a pixel.

Figure 2
The PDF signal from a pair of platinum atoms calculated with the exact algorithm
(left) and the approximation (right); the lower images are shown in a higher
contrast to better demonstrate the effect of the approximation. The gray contour
outlines a calculation box.

electronic reprint



jhj. In order to decrease the error, the approximate diffuse scattering

can be calculated on a padded grid, which is then cropped.

Yell allows the user to specify both the number of sampling points

and the padding in order to control the accuracy and speed of the

diffuse scattering calculation.

Using appropriate settings, our algorithm can provide the

approximation with negligible errors. In structure factor calculations

they are usually chosen such that the error of this approximation is

smaller than 0.5%. For such settings, our algorithm is typically 20–30

times faster than the direct summation.

4.2. Performance

The program is designed to be used on desktop computers. The

execution time of the program is roughly proportional to

NpixNpairsNparams, where Npix is the number of pixels in the diffuse

scattering map, Npairs is the number of interatomic pairs and Nparams is

the number of refined parameters. Note that the number of pairs is

proportional to the square of the number of atoms per chemical unit,

which may grow quickly with the number of atoms in the unit cell.

Full refinements of relatively simple problems like the one presented

in Appendix A can be performed within seconds or minutes using the

fast algorithm; medium complexity disorder models may take hours

on a modern desktop computer.

The requirements for the operating memory may quickly increase

with increasing complexity. Since Yell uses a full-matrix refinement, it

requires the full Jacobian to be kept in the operating memory, and

thus the memory consumption scales with NpixNparams. Typical

memory requirements per parameter are of the order of <1 MB for

one-dimensional diffuse scattering streaks, 10 MB for two-dimen-

sional diffuse planes, 100 MB for three-dimensional diffuse scattering

reconstructed on a rough grid and 1 GB for three-dimensional diffuse

scattering on a fine grid.

4.3. Implementation details

Yell is written in the C++ language. The program is a free software

with open-source code distributed under the GPLv2 license. It uses

several libraries: cctbx (Grosse-Kunstleve et al., 2002) for general

crystallographic calculations, boost.spirit for parsing the text input

file, hdf5 (http://www.hdfgroup.org/HDF5) for binary input files and

levmar (Lourakis, 2004) for the minimization using the Levenberg–

Marquardt least-squares algorithm.

5. Conclusions

Yell is a program for diffuse scattering interpretation via 3D-�PDF

refinement. It allows the user to explore details of local ordering in

single crystals in terms of pairwise correlations without the necessity

of explicitly constructing the full crystal model like in MC and MD

approaches. This makes the refinements computationally much more

efficient. The fast diffuse scattering calculation algorithm allows

disorder problems of medium complexity to be refined in a matter of

minutes or hours. The program has been successfully applied to a

number of problems (Dshemuchadse et al., 2013; Urban et al., 2014;

Simonov et al., 2014; Weber et al., 2014).

Yell is a free software; its source code, documentation and binary

executables for Windows and Mac Os X are available at https://

github.com/YellProgram/Yell.

APPENDIX A
Example of a Yell input file

In the following section a commented example of a complete Yell

model file is presented. It is based on a hypothetical disordered

metallic phase with composition Fe0:5&0:5. On average the structure is

cubic closed packed. The structure is short-range ordered: the

occupancies of neighboring sites are correlated and each iron atom

introduces a relaxation field around it, i.e. size effects are observed.

The example is inspired by the disordered alloy Fe46:5Ni53:5 (Jiang

et al., 1996). In order to simplify the input file, the composition was

computer programs
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Figure 3
Comparison between exact (blue) and approximate (red) diffuse scattering profiles
calculated for the contribution of one atomic pair.

Figure 4
Diffuse scattering hk0 section from the example iron–void structure.

Figure 5
The xy0 section of the 3D-�PDF from the iron–void example structure. Positive
3D-�PDF densities are in red and negative densities are in blue. The strong
asymmetries in the signals arise from the assumption that the distance between iron
atoms separated by the average vector (1/2, 1/2, 0) is longer than on average, while
those separated by (1, 0, 0) show a shorter interatomic distance. See Weber &
Simonov (2012) for a more comprehensive discussion about the qualitative
interpretation of 3D-�PDFs.
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changed to 50/50, the Ni atom was replaced by the void and the

correlations were restricted to seven neighboring shells; numerical

values of correlations were left intact.

The input file starts with a preamble specifying the unit-cell

dimensions, the grid for diffuse scattering sampling and the Laue

symmetry of the crystal:

In the next step the settings of the program are specified. The

calculation is set to a (slow) direct summation, and the refinement is

turned off in order to merely calculate diffuse scattering:

The next section specifies the short-range-order parameters. Their

numerical values are usually determined in the course of a 3D-�PDF

refinement. In the given example the values are taken from Tables II

and III of Jiang et al. (1996). The meaning of each variable will be

specified later.

The keyword RefinableVariables and the following opening

and closing square brackets are not required here but would define

the variables to be optimized in a least-squares refinement.

Then, the average structure is defined:

The Variant defines a site that is occupied by an iron atom with

probability p ¼ 1=2 or by a void with the same probability. The

Variant is associated with an alias FeVoid for later reference. The

iron atom is defined by the line Fe ¼ Fe 1 0 0 0 0:002, listing alias,

atomic type, multiplicity, x, y and z coordinates, and an isotropic

atomic displacement parameter Uiso.

The next section defines the possible displacements of the Fe atom

along the x, y and z directions, aliased as Fe trans x, Fe trans y

and Fe trans z, respectively:

The rest of the file defines short-range correlations of the model.

The first entry is the zeroth neighbor, which is special because it

represents a correlation of an atom with itself. Such correlation

coefficients are to be extracted from the average structure and fixed

before the refinement in order to obtain a correct scale factor, which

is required to determine all the other correlation coefficients

correctly. In the present example, the probability and atomic

displacement parameters of the Fe atom are assigned via

SubstitutionalCorrelation and ADPCorrelation, respectively:

Here Multiplicity 1 sets the multiplicity of the interatomic pair

with respect to the Laue group of the crystal.

The correlations in the first and the second shell of each iron atom

include the substitutional correlation and size effect:

The values 0:25þ dp110 and 0:25þ dp200 are the joint prob-

abilities of finding two iron atoms at the same time separated from

each other by vectors (1/2, 1/2, 0) and (1, 0, 0). In the case of a random

distribution of iron and voids the joint probability would be

cironcvoid ¼ 0:52 ¼ 0:25. The variables dp110 and dp200 therefore

represent the differences between joint probabilities in the real

structure and average structure (Patterson probabilities). The values

dx110 and dx200 contain the displacements due to the size effect.

The following section introduces the rest of the short-range-order

parameters up to the seventh nearest neighbor. For the long-distance

correlations only substitutional correlations are considered and

size effects are ignored. The final square bracket closes the

Correlations section:

Note that only the pair correlations within the asymmetric unit of

the Laue group m3m need to be provided by the user. Any other pair
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correlations are intrinsically computed by applying the Laue

symmetry.

The diffuse scattering calculated from this model is presented in

Fig. 4 and the 3D-�PDF is presented in Fig. 5.

We would like to express gratitude to the authors of the software

libraries levmar and especially cctbx for making them public; this

made development of Yell much easier. We would also like to express

gratitude to Dmitry Logvinovich for help in preparation of the

manuscript and testing of the program. This work was supported by

the Swiss National Science Foundation grants 200021_121759 and

200020_140389.
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Chapter 4

Examples

4.1 Complex metallic alloy hP386-Al57.4Cu3.5Ta39.0

A new hexagonal complex metallic phase in the system Al-Cu-Ta was discovered in our laboratory.
The phase has a refined composition Al57.4Cu3.5Ta39.0, very similar to several other complex cubic
phases: cF444-Al63.6Ta36.4, cF (5928− 20)-Al56.6Cu3.9Ta39.5 and cF (23256− 122)-Al55.4Cu5.4Ta39.2.
The newly discovered phase shows a peculiar behavior. The quenched sample contained two types
of crystals with nearly identical unit cells and average structures: one with and another without
diffuse scattering. The task was to investigate the origin of diffuse scattering.

The full result of this investigation is presented in [30]. The current chapter summarizes the part
which considers diffuse scattering.

Experiment and data preparation

The diffuse scattering was measured using an in-house diffractometer with a Mo rotating anode
x-ray source, a Ge monochromator and a MAR300 image plate detector. The exposure time was
1000 seconds and ∆ϕ = 0.5◦ per frame. The crystal was indexed in the program XDS [31]. The
reconstruction of reciprocal space was performed using the program Xcavate [32]. The background
was estimated as an average of the intensities slightly above and below the reconstructed layers.

Average structure

The crystal without diffuse scattering has the space group P63/mmc (a=13.512(2)Å, c=39.022(5)Å)
and a relatively complex structure with 39 independent positions (Fig 4.1.1a). Similarly to many
inter-metallic compounds, the crystal contains a significant degree of disorder: 1 out of 16 Ta
positions and 3 out of 14 Al positions are split, one Al position is deficient, all 5 copper atoms are
found on mixed Al/Cu positions occupying them to an extent between 5% to 39%. The crystal
structure can be understood as a close-packing of two Frank-Kasper clusters F 32

69 (blue) and F 39
74

(red) with radii of approximately 7Å (Fig 4.1.1c). The notation F f
v stands for a cluster with a

fullerene-like outer shell having f faces and v vertices [33].
The crystal with diffuse scattering has the same unit cell within the experimental uncertainty

and almost identical average structure with slightly higher atomic displacement parameters than

37
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Figure 4.1.1: Structure of hP386-Al57.4Cu3.5Ta39.0. a) The average structure of the crystal without
diffuse scattering. b) The difference of the structures with and without diffuse scattering. Blue blobs
show the electron density maxima in the latter crystal which correspond to the mirror image of Ta
positions in a mirror plane x, y, 1 − z (dashed line). The correspondence is marked by the arrows.
In the disorder model all the atoms in the surrounded slab are inverted. c) Cluster description of
the average structure consisting of two Frank-Kasper clusters F 32

69 (blue) and F 39
74 (red). d) The

structure of a disordered inlet consisting of a mirror image of F 32
69 cluster (blue) and two F 40

76 clusters
(red). The outer shells of F 39

74 and F 40
76 are almost identical except for one additional face (marked

with arrow). The images c and d are taken from [30].
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that of the crystal without diffuse scattering. After refinement the difference electron density of
this crystal contained several additional maxima. Unfortunately, the crystal selected for diffuse
scattering analysis had a large volume and suffered from absorption, thus electron density maps
were hard to interpret.

The difference between the two crystals could be understood better from a difference map con-
structed from coefficients (|Fdisord(h)| − |Ford(h)|)eiϕord(h) where Fdisord(h) are the experimental
form factors of the crystal with diffuse scattering, Ford(h) and ϕord(h) are the experimental form
factors and the refined phases of the crystal without diffuse scattering. Such a map depicts the dif-
ference between the average structures of two crystals. The map revealed a set of negative minima
close to some Ta positions and a set of positive maxima (blue surfaces in Fig 4.1.1b) related to the
Ta positions by a non-crystallographic mirror plane x, y, 1− z. The differences related to Cu and Al
atoms were not visible. Overall, the crystal with diffuse scattering contains additional disorder in a
form of an “inlet” around the x, y, 0.5 plane.

Ordering model

The diffuse scattering is present in the form of sharp streaks parallel to c* underneath Bragg peaks
(Fig 4.1.2). Due to the broad Bragg peaks and the very large lattice constant c = 39.022Å, it was
impossible to extract the isolated diffuse scattering profiles and to calculate the 3D-∆PDF map.
However, interpretation of the two average structures was sufficient to describe local order.

Based on crystal chemical consideration, it was possible to find a model which describes the
presence of additional electron maxima and produces a geometrically plausible structure. It was
assumed that with a probability of approx. 5%, a slab around the plane x, y, 0.5 is flipped by a mirror
plane mz. As a result, the F 32

69 (blue) cluster transforms to a mirror image of itself, while the cluster
F 39
74 (red) transforms into the cluster F 40

76 found in all three related cubic Al-(Cu)-Ta compounds
(Fig 4.1.1d). Further, it was assumed that the disordered slab does not disturb the average crystal
structure. Since the flipped slabs are rare in the structure, their distribution was assumed to be
uncorrelated along c direction. Diffuse profiles contained no indication of any correlation between
the slabs.

In terms of Yell, the model is very simple. A single slab is separated into a Variant with two
options: flipped and not flipped slabs. The Correlations section contains a single entry with a zero-
neighbor correlation. The diffuse scattering from this model was very similar to the experimentally
observed one, except the model diffuse scattering decreased much slower with increasing c*. In
order to compensate for this, the atomic displacement parameters U33 of all disordered atoms were
increased by 0.02Å2.

The final model nicely reproduces the experimental diffuse scattering (Fig 4.1.2). Such corre-
spondence may be considered satisfying for an essentially zero-parameter model, where all of the
structural information (apart from additive constant U33) was derived from the chemical interpre-
tation of the average structures and verified by diffuse scattering.

Discussions

This chapter showed that even in cases when diffuse scattering cannot be quantitatively extracted,
Yell can be used to confirm a disorder model. Such analysis requires only a visual comparison of
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Figure 4.1.2: Experimental (left) and model (right) diffuse scattering from disordered hP386-
Al57.4Cu3.5Ta39.0. The inset shows the enlarged section containing diffuse scattering between the
Bragg peaks. Despite the fact that Bragg peaks are closely spaced, the presence of diffuse scattering
is evident. The image is taken from [30].

model and experimental diffuse scattering. In the current case, it allowed to support the model of
unusual one dimensional disorder in the form of rare flips in the average structure matrix.

4.2 Ge4Bi2Te7

Germanium bismuth tellurides (GeTe)nBi2Te3 received much attention due to their thermoelectric
properties. The system contains several thermodynamically stable low temperature phases. All of
them crystallize in a tetradymite-like layered structures composed of hexagonal anion and cation
layers, which are stacked in an fcc-close packed fashion to form slabs. The slabs are separated by
van der Waals gaps. At high temperatures such crystals transform into cubic NaCl-type structures.
The cations and vacancies become randomly distributed, while the anion positions stay exclusively
occupied by Te. Quenching the high temperature phase yields a metastable cubic phase with pro-
nounced vacancy ordering, which plays an important role in defining thermal conductivity and thus
the thermoelectric figure of merit and can be potentially optimized by varying the crystal composi-
tion and thermal history of the sample. A reliable method for determining the local structure will
be vital to controllably produce samples with the optimal thermoelectric properties.

The full study will be published in [34]. The current chapter presents only the diffuse scattering
analysis.
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Figure 4.2.1: Average structure of Ge4Bi2Te7 along two different projections. a) Arbitrary projec-
tion. b) Illustration of the sequence of layer stacking.

Average structure

The quenched Ge4Bi2Te7 crystal has a NaCl type average structure (Fig 4.2.1). The cation position
is substitutionally disordered and may be occupied by Ge, Bi or void. In addition, it is split along
⟨xxx⟩ directions with a displacement of 0.24Å. The anion position is fully occupied by Te and does
not show any resolvable splitting. However, its atomic displacement parameter (Uiso(Te) = 0.027
Å2) is slightly higher than expected for a heavy atom at room temperature.

Diffuse scattering

The diffuse scattering from Ge4Bi2Te7 is present in the form of sharp streaks along ⟨111⟩c directions1

(Fig 4.2.2). The streaks have a strong intensity modulation, with a peak at position (h−δ, k−δ, l−δ)
where δ ≈ 1/7, and a flat tail. A very convenient feature of the diffuse scattering is that it decreases
to zero close to the Bragg peaks, which makes it easy to eliminate the Bragg reflections. Within
the experimental resolution the lateral width of the streaks is comparable to the width of the Bragg
reflections, i.e. the order along directions perpendicular to the streaks exceeds the coherence length
of the experiment. Therefore, the structure can be well approximated as being built from slabs that

1The index c corresponds to a cubic unit cell setting.
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Figure 4.2.2: Diffuse scattering layer h0lt of Ge4Bi2Te7.

are long-range ordered along two dimensions and short-range ordered along the ⟨111⟩c direction.
The symmetry of diffuse scattering pattern is m3̄m, what is equal to the Laue symmetry of the
average structure.

Data preparation

Diffuse scattering was measured at the Materials Science Beam-line ID11 at the synchrotron ESRF
(Grenoble, France) using a FReLoN2K CCD detector. The beam energy was set to 26.000 keV
(0.47686 Å). The experiment contained a single run of 360◦ φ rotation with ∆φ = 0.1◦ per frame.

Diffuse scattering was reconstructed using a home-written script. Corrections for air absorption
and polarization were applied. The reconstructions were done using a trigonal basis at, bt, ct which
is related to the cubic one by the following equations: at = bc/2 − cc/2, bt = ac/2 + cc/2 and
ct = ac+ bc+ cc. Three reconstructions were performed for the equivalent orientations of the ct axis
along [111], [111̄], [11̄1̄]. The reconstructed volume comprised 501×501×501 pixels (pixel sizes [1/37,
1/37, 1/56] in fractional coordinates with respect to the trigonal basis). The intensity of each streak
was integrated by summing squares of 3× 3 pixels along at and bt directions. The background was
estimated as the median of the pixels around the integrated area and substracted. It was assumed
that the different set of streaks come from different domains each of which contain disorder along
one of the ct direction and is periodic in the other two directions. Thus, the streaks were averaged
in the Laue group m3̄m. Outliers were rejected following a modified version of the method proposed
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Figure 4.2.3: Experimental 3D-∆PDF of Ge4Bi2Te7. The inlet on the right shows the expanded
version of the ∆PDF signal of the first nearest neighbor which contains signature of size effect. The
image can be understood as follows: when a certain layer is vacant, the layer closest to it moves
towards the void, when the layer is occupied by Ge/Bi, the nearest neighbor moves away from it.

by Blessing [35]. The voxel with intensity Ii was considered as outlier if |Ii − Imedian| > 2t, where
Imedian is the median of all symmetry equivalent intensities, t = median(|Ii− Imedian|)[n/(n−1)]1/2

and n is the number of averaged voxels. Bragg peaks as well as λ/3 and λ/6 artifacts were deleted
and the intensities beneath them were approximated by linear interpolation in order to improve the
quality of 3D-∆PDF maps. Interpolated regions were zero weighted in the course of the refinement.
The resolution function of the diffraction experiment was obtained from the profiles of unsaturated
Bragg reflections. It was approximated by a Gaussian with a constant half-width of 0.0037 Å−1 and
its Fourier transform was used during refinement through reciprocal_space_multipliers.h5 [11].
Absorption correction was not applied to the diffuse scattering.

3D-∆PDF analysis

3D-∆PDF map indicates the presence of a size effect with displacement vectors along the ct direction
(Fig 4.2.3). First and second neighbors show “positive-negative” signals, which are characteristic for
size effect with heavier interatomic pairs being separated stronger than the lighter pairs. The further
neighbors contain more complicated signals.

It was decided not to use a SizeEffect model because the average structure contains split atoms.
In such case the refinement of SubstitutionalCorrelations between different alternative atomic
positions effectively simulates size effect and provides better accuracy and more flexibility.

Model of ordering

It is convenient to describe the ordering of the crystal in a trigonal setting (Fig 4.2.1b). In such a
cell, the average crystal structure consists of hexagonal layers arranged in an ABCABC sequence.
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Figure 4.2.4: Examples of slabs which can be present in Ge4Bi2Te7.

With a certain probability, a full cation layer is replaced by a void layer periodic along at and bt

directions, what was also observed in many ordered structures of the same system (e.g. Bi2Ge3Te6
[36] 658931-ICSD).

The disorder model may be described as follows. The crystal consists of ordered slabs of different
sizes. The slabs are terminated on both sides by Te layers and are separated by void layers (Fig
4.2.4), the so-called van der Waals gaps. The two anion layers closest to the void (labeled Te1 and
Te2 if they are above and Te1 and Te2 if they are below the void layer) are allowed to relax along
ct direction. The two cation layers closest to the void (labeled GB1/GB1 and GB2/GB2) may also
relax along ct, and, in addition, their composition may differ from the bulk. We will call pi the
probability to find a slab with i anion layers. It is assumed that slabs are randomly stacked, i.e.
that the probability to find a certain slab does not depend on the size of the preceding slab.

Based on the 3D-∆PDF map it was assumed that slabs with i > 15 do not exist. In the course
of refinement it turned out that the probability of finding layers with i = 3 was refining to a small
negative number. Thus, it was assumed that such slab does not exist either.

Totally, the final model comprises 18 parameters to be refined: a scale factor, eleven probabilities
p4, . . . , p14 (p15 is obtained from the condition

∑
pi = 1), two parameters for defining ratio Bi:Gd in

the layers GB1/GB1 and GB2/GB2, and four displacements for layers Te1/Te1, Te2/Te2, GB1/GB1

and GB2/GB2.
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Definition of the stacking model in Yell

Average structure

The average structure of the crystal consists of two Variants. The first variant describes the Te
position and contains five alternatives: bulk Te, Te1, Te1, Te2 and Te2. The second variant describes
the cation position and contains six alternatives: void (V), bulk GB, GB1, GB1, GB2 and GB2.

The average occupancies of each of the alternatives depend on the slab probabilities pi. For
example, the occupancy of the void can be defined as c(V ) = N(V )

N(Cat)+N(V ) where N(V ) is the
number of void layers in the structure and N(Cat) is the number of cation layers in the structure.
Each slab contains i cation layers, and one void layer. Thus, N(Cat)+N(V ) = Ns

∑
i ipi where Ns

is the number of slabs in the crystal, while N(V ) = Ns. Thus:

c(V ) =
N(V )

N(Cat) +N(V )
=

Ns

Ns
∑

i ipi
=

1∑
i ipi

In order to input this model in Yell, similar calculations need to be performed for each of the
alternatives. The calculations are straightforward but tedious. In order to avoid the risk of intro-
ducing errors, the joint probabilities were calculated as a special case of substitutional correlations
using equation (4.2.5) described below.

Correlations

Ge4Bi2Te7 contains only SubstitutionalCorrelations. Let us denote the joint probability of finding
a layer A and a layer B separated by k layers as P k(A,B). Here, the index k counts both cation
and anion layers (Fig. 4.2.4), A,B ∈ {V,GB,GB1, GB1, GB2, GB2, T e, Te1, T e

1, T e2, T e
2}. The

probabilities P k(A,B) are too complex to be derived by hand. They were calculated using the
following recursive procedure.

Step 1. Calculate the structure composition after a van der Waals gap.
Assume that a certain position k = 0 in the crystal is occupied by a void layer. Independent

from the size of the slab that follows the void layer, the layer at k = 1 will be occupied by Te1,
and the layer at k = 2 will be occupied by GB1, as both of the layers appear in each slab. The
third layer depends on the slab which follows the void. If it is the slab i = 3 than the third layer is
occupied by Te, otherwise it is occupied by Te2. Thus, the third layer can be described as a linear
combination p3Te+(1−p3)Te2. In general, the composition of layers k = 0, . . . , 5 can be calculated
using a linear combination of all slabs taken with appropriate probabilities:



V
Te1

GB1

p3Te+ (1− p3)Te2

p3GB1 + p4GB + (1− p3− p4)GB2

p3Te1 + p4Te2 + (1− p3 − p4)Te
−


= p3



V
Te1

GB1

Te
GB1

Te1
−


+p4



V
Te1

GB1

Te2

GB
Te2
. . .


+p5



V
Te1

GB1

Te2

GB2

Te
. . .


+. . . (4.2.1)

The same calculation is depicted graphically at Fig. 4.2.5.
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Figure 4.2.5: Schematic representation of an algorithm for calculating the composition of layers after
void P k(A|V at 0) which is marked green. In the first iteration the composition of the first six layers
is calculated as a linear combination of slabs i taken with probabilities pi. Second iteration utilizes
results of the first iteration to calculate composition of six more layers. Each consequent iteration
uses the result of the previous iteration in order to calculate six more layers.
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The layer k = 6 can not be determined from eq. (4.2.1) because the slab i = 3 contains only 6
layers with k = 0...5. However, notice that the layer that follows the slab i = 3 is a void layer. The
void layer is followed by Te1 then GB1 and so on as described by left side of eq. (4.2.1). Thus, the
result of the first iteration (marked green in Fig. 4.2.5) can be attached to the ends of each slab and
the same calculation can be repeated in order to obtain layers for k = 6, ..., 11. Then, the result of
the second iteration can be used in the third iteration to obtain layers for k = 12, ..., 17. In such a
way it is possible to calculate the composition at any distance k from a void layer.

More formally, we call P k(A|V at 0) a conditional probability to find a layer A at a position k
given that the position k = 0 is occupied by V . It can be calculated as follows:

P k(A|V at 0) =
∑
i

piC
k
i (A) (4.2.2)

where Ck
i (A) is equal to the probability to find a layer A at a position k given that the slab of size

i starts at position k = 0. In turn, Ck
i (A) can be calculated using the following equation:

Ck
i (A) =


1 if k < 2i and position k in slab i is occupied by a layer A

0 if k < 2i and position k in slab i is occupied by a layer ̸= A

P k−2i(A|V at 0) if k ≥ 2i

(4.2.3)

Step 2. Calculate pairwise probabilities
Pairwise probabilities P k(A,B) are calculated by summing probability Cj

i (A) to find layer A at
each position j in each slab i multiplied by probability Cj+k

i (B) to find layer B at position j + k:

P k(A,B) = c(V )
∑
i

pi
∑
j

Cj
i (A)C

j+k
i (B) (4.2.4)

Average occupancies of each layer A can be calculated as a special case of eq. (4.2.4)

c(A) = P 0(A,A) (4.2.5)

The algorithm described above was implemented using symbolic computation toolbox in Matlab
and was then transformed into Yell input file using arithmetic expressions.

Results

The final refinement with Yell yielded Rw = 0.25. The R-factor Rw is defined as

Rw =

∑
w(Iexp − Imodel)

2∑
wI2exp

where w is weight of the experimental data, Iexp and Imodel are the intensities of experimental and
model diffuse scattering. Fig. 4.2.6 shows the comparison between experimental and model 3D-
∆PDF. Refined probabilities pi are depicted in Fig. 4.2.7a. The distribution of the thickness of the
slabs has a relatively sharp peak at i = 6 and a long tail. The probability for the two largest layers p14
and p15 is slightly bigger than p13. It is expected that the probabilities should monotonically decay,
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Figure 4.2.6: Comparison between experimental and model 3D-∆PDF in Ge4Bi2Te7.

thus the increase in the probabilities of the last two members may be attributed to the limitations of
the model, which assumes that the distribution of the blocks is independent or to systematic errors
in the data.

The relaxation of the four layers closest to the van der Waals gap is presented at Fig. 4.2.7b.
The Te1 and GB1 move towards each other and detach from the bulk. In order to support the layer
dimerization, the composition of GB1 layer is enriched with the trivalent Bi. The distance between
Te2 and GB2 is also decreased, though the effect is less pronounced. In order to achieve this, the
Te2 layer actually moves away from the void.

During refinement the concentration of void layers was not fixed and was defined by the refined
probabilities pi. The final value p(V ) = 0.134, however, is in good agreement with the value obtained
for the average structure 0.143. The total composition of the crystal converged to Ge0.61Bi0.26Te
which slightly deviates from the average structure composition Ge0.56Bi0.29Te. Refined interatomic
distances compare reasonably well to that of an ordered phase Ge2Bi2Te5 [37] with similar structural
properties (Fig 4.2.7).
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Figure 4.2.7: Refined frequencies of slabs (a) and interatomic distances (b). The interatomic dis-
tances for Ge2Bi2Te5 are taken from [37].

Discussion

It has been shown that the distribution of slabs of different sizes can be reliably investigated. Disorder
in the current crystal has a dominating effect on phonon scattering and thus determines thermal
conductivity and the thermoelectric figure of merit. It would be interesting to follow evolution of
disorder and thermoelectric efficiency of this and similar systems as a function of composition and
temperature treatment.

The described algorithm for transforming a stacking model into a Yell input file could be
implemented using 157 lines of Matlab code2. The algorithm can be trivially generalized for cases
when the probability of each next slab depends on the previous slab (i.e. stacking model is described
by a Markov chain). Using the described algorithm it is possible to write a general program which
will help preparing Yell input for any stacking fault model.

4.3 Tris-t-butil tricarboxamide

In the following paper investigation of 2D disorder from the organic crystal of tris-t-butil tricarbox-
amide is presented. In addition, the influence of various systematic errors coming from experiment
and data treatment is carefully analyzed. It is shown that 3D-∆PDF refinement provides reliable
short range order parameters on the level of 0.04% for probabilities and 0.01Å for size effect param-
eters if systematic errors are carefully taken into account. The correlations for interatomic vectors
of up to 100Å were successfully refined.

The paper is close to its final version and is intended to be submitted to the Journal of Applied
Crystallography.

2For full code see appendix A
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Experimental uncertainties of Three Dimensional Pair

Distribution Function investigations exemplified on the

diffuse scattering from a tris-t-butyl-1,3,5-benzene

tricarboxamide single crystal
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Abstract

Diffuse scattering from a substitutionally disordered tris-t-butyl-1,3,5-benzene tricar-

boxamide single crystal is analyzed with the Three-Dimensional Difference Pair Dis-

tribution Function (3D-∆PDF) method. The real structure of the crystal is shown to

consist of infinite polar molecular stacks along the c axis, which are laterally packed

in a hexagonal fashion. The orientation of the stacks is disordered, but neighboring

stacks strongly prefer anti-parallel arrangements. Quantitative orientational pair cor-

relation coefficients are determined for all lateral pairs separated by less than 100Å. A

careful analysis of the factors influencing the accuracy of the 3D-∆PDF refinement is

presented. It is shown, that the effect of statistical errors is small compared to system-

atic errors coming from diffraction geometry distortions, reciprocal space resolution or

incompletely corrected background. Various strategies for identifying and decreasing

systematic errors are discussed. The impact of the systematic errors on the uncertainty

of the results is not specific for 3D-∆PDF investigations, but also relevant for other

quantitative diffuse scattering modeling techniques.
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1. Introduction

With the recent advances in X-ray area detector technology, high quality diffuse scat-

tering has become routinely available. This opens new perspectives for investigating the

local structure of disordered crystals and provides valuable information about a broad

spectrum of phenomena ranging from catalytic activity (Simoncic & Armbruster, 2004)

to giant magneto resistance (Adams et al., 2000). Several methods are currently used

for diffuse scattering analysis, the most popular being the powder pair distribution

function (PDF) method (Billinge, 2008), as well as single crystal Monte-Carlo (MC)

(Butler & Welberry, 1992) and reverse Monte-Carlo (RMC) (Nield et al., 1995) simu-

lations.

Recently, we have introduced a new method called Three-Dimensional Difference

Pair Distribution Function (3D-∆PDF) modeling (Weber & Simonov, 2012) and have

presented the program Yell, which can perform such refinements (Simonov et al.,

2014). The 3D-∆PDF method provides direct access to local structure properties in

terms of pairwise interatomic or intermolecular correlations. It gives a unified de-

scription to all types of disorder including substitutional, displacive and size effect

phenomena.

Here we present a case study showing that the 3D-∆PDF refinement method can

reliably provide quantitative information about local order. Various factors influencing

the uncertainty of the refined correlation coefficients are carefully analyzed. The factors

are not specific for 3D-∆PDF refinements, but relevant for any quantitative refinement

method based on single crystal diffuse scattering including MC and RMC.

A single crystal of N,N’,N”-tris-t-butyl-1,3,5-benzene tricarboxamide was selected

as a model system. The material acts as a nucleating agent and an effective clarifier

in the production of isotactic polypropylene (Blomenhofer et al., 2005). It belongs to

a family of substituted 1,3,5-benzene tricarboxamides, which also received attention

IUCr macros version 2.1.6: 2013/03/28
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for their ability to form supramolecular polymers, i.e. polymers stabilized by weak

hydrogen bonds and π-stacking between monomers. The filaments may show liquid

crystalline behavior (Matsunaga et al., 1986) and induce a gelation in a variety of

liquids (Hanabusa et al., 1997). Single filaments have a macroscopic dipole moment,

which plays an important role in the process of self-assembly (Albuquerque et al., 2013).

The average crystal structure, which has a hexagonal lattice (a=14.114(2)Å, c=6.930(1)Å)

with space group P63/m, is reported in (Kristiansen et al., 2009). The molecules are

stacked on top of each other along c forming infinite columnar stacks with rod group

p63 (Fig. 1). Within the stacks the molecules are connected by a helical net of hydrogen

bonds. Laterally, the columns are packed in a two-dimensional hexagonal closed fash-

ion. Stacks appear in different chirality, which, in the average structure, are related by

a mirror plane perpendicular to the c axis, such that interpenetrating “up” and “down”

orientations are present with equal probability.

2. Theory

The 3D-∆PDF is the difference between the autocorrelation function of the real crys-

tal P tot(r) and the autocorrelation function of the average structure (= Patterson

function) Paverage(r). It can be obtained as the Fourier transform (FT) of the diffuse

scattering:

3D-∆PDF(r) = Ptot(r)− Paverage(r) = FT[Idiffuse(h)]

The 3D-∆PDF provides information about the local order in a crystal in terms of

the distribution of interatomic vectors. 3D-∆PDF values are positive if the probability

for finding an atomic pair separated by a vector r is higher than expected from the

average structure and negative otherwise.

In the case that any displacive correlations apart from size effects are neglected
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and the crystal consists of two building blocks A and B per unit cell, which mutually

replace each other with the same average probability of 0.5, equation (9) in (Weber &

Simonov, 2012) may be simplified to:

Idiffuse(h) =
∑

uvw

∑

i,j={A,B}

[

pijuvw exp(2πih(ruvw+u
ij
uvw))−

1

4
exp(2πihruvw)

]

Fj(h)F
∗
i (h)

(1)

where i and j may be either A or B, Fi are the molecular form factors, i.e. the Fourier

transforms of the corresponding building blocks, pijuvw is the joint probability for finding

a molecule i in one unit cell and simultaneously a molecule j separated by a lattice

vector uvw, and u
ij
uvw is a size effect parameter, which is equal to the difference between

the real and the average length of the corresponding interatomic vector. Not all of the

size effect parameters are independent. To be consistent with the average structure

they must follow the equation

∑

ij

pijuvwu
ij
uvw = 0

In the case of binary disorder it is convenient to replace the joint probability param-

eters pijuvw by correlation coefficients cuvw defined as:

cuvw = pAA
uvw + pBB

uvw − pAB
uvw − pBA

uvw

Such coefficients may take values from -1 to 1. A value of -1 means that the cor-

responding pairs of unit cells are always occupied by different constituents, while a

value of 1 indicates that they are always the same. By definition c000 = 1, because a

molecule is never disordered with respect to itself.

3. Experiment and data processing

The experimental data was taken from Schaub et al. (2007). The experiment was per-

formed using a Mar345 detector at the Swiss-Norwegian beam lines at the synchrotron
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ESRF, Grenoble, France. The data was collected in a single run with a total rotation

of 256.5◦ around the φ-axis (∆φ = 0.25◦/frame) and a wavelength λ = 0.75Å. The

distance from the crystal to the detector was 180mm.

Diffuse scattering, which appears in layers, was reconstructed with the program

Xcavate (Estermann & Steurer, 1998) based on the orientation matrix determined by

the program XDS (Kabsch, 2010). The intensity of each layer was integrated along

the c direction to account for resolution effects. The background was estimated as

the average of the intensities slightly above and below the diffuse scattering layers

and finally subtracted. Bragg peaks were eliminated with the punch-and-fill method

(Kobas et al., 2005), i.e. pixels affected by Bragg scattering were set to the average

intensity of the surrounding pixels. The diffuse scattering intensity was averaged in

the Laue group 6/m. Since Xcavate reconstructions are mapped in cartesian reciprocal

space coordinates, averaging is only possible in the common subgroup 2/m. Therefore

reconstructions were performed in 3 equivalent orientations around the c axis to allow

averaging over the full Laue symmetry. The details of the experiment are summarized

in the Table 1.

Table 1. Characteristics of the experimental diffuse scattering.
Experimental resolution 1.10Å

Number of reconstructed layers 13, l=-6...6
Diffuse scattering pixel size within the layers 0.0015Å−1 x 0.0015Å−1

Dimensions of reconstructed array 1213x1213x13≈1.9×107

Number of symmetry independent voxels 891’871
Average redundancy 8.1

Rint =

√

∑

(Ii−〈I〉)2
∑

I2

i

18%

〈 I
σr

〉 1.96

Estimated uncertainties of measured pixels σexp were calculated as the square-root

of the variance of symmetry equivalent pixel values. As a consequence of the small

redundancy the estimates of σexp showed significant noise (Fig. 2). This posed the

risk that data points whose equivalent pixels by accident have a small variance, would

get unjustifiably strong weights in the refinement. In order to avoid such situations
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and to decrease the noise level in the σexp maps, a new set of uncertainties σr was

determined. It was assumed that data points having similar intensities, background

contributions and positions in reciprocal space are likely to have similar uncertainties

as well. The standard uncertainties of individual pixels were therefore determined using

a linear regression of σexp on a constant term C, the length of the scattering vector h

(which affects the experimental resolution), the square root of total scattering intensity
√
I =

√

Ibackground + Idiffuse and diffuse scattering Idiffuse (which both affect count

statistics). The model for estimating σr is thus:

σr = C + αb

√
I + αdIdiffuse + αsh

Regression was performed separately for each layer. As a consequence, the estimates

σr became much smoother than σexp. On the other hand, uncertainties of pixels affected

by singular experimental artifacts became underestimated. In order to down-weight

such regions the estimates σr were changed to σexp if σexp > 3σr.

4. Diffuse scattering and local structure determination

Diffuse scattering is present as sharp layers perpendicular to c∗ at integer l positions.

Within the layers, the diffuse scattering is found close to the Brillouin zone boundaries

forming a honeycomb-like pattern (Fig. 2). The hk0 layer shows no diffuse scattering.

The sharpness of diffuse scattering along the c∗ direction means that the real struc-

ture is well ordered along c and disordered only along a and b directions, which agrees

well with the assumption that the molecules form infinite ordered stacks. The fact that

the hk0 layer contains no visible diffuse scattering means that the projection of the

structure along the c axis is not disordered. This is consistent with the average struc-

ture feature that “up” and “down” stacks are related by a mirror plane perpendicular

to c, making them indistinguishable and thus perfectly ordered in the projection along
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c.

The honeycomb shape of the diffuse scattering is a typical signature of a frustrated

triangular lattice (see e.g. Welberry et al., 2011). Such frustration arises when nearest

neighbors prefer antiparallel orientations, but the odd-numbered triangular lattice does

not allow to make all of the contacts heterogeneous.

The xy0 cross section from the experimental 3D-∆PDF is depicted in Fig. 3. The

picture consists of flower-like patterns forming a hexagonal lattice. Each of the flow-

ers represents an up-down correlation between a pair of molecular stacks. A positive

(red) signal at a lattice point r means that a pair of stacks separated by such a vector

tend to be in parallel orientation, while negative (green-blue) patterns indicate pref-

erence for antiparallel arrangements. The densities of the patterns are proportional

to the corresponding correlation coefficients cuv0 = cuv. The pattern in the center of

3D-∆PDF space represents the zeroth neighbor, i.e. the correlation of a molecule with

itself, which, by definition, has a perfect positive correlation c00 = 1. The first neigh-

bors show negative correlations and the further shells alternate between positive and

negative correlations with decreasing strength.

The numerical values of the correlation coefficients were obtained via least squares

refinement against the diffuse scattering. The minimization criterion was

Rw =

[

∑

((Iexp − Imodel)/σr)
2

∑

(Iexp/σr)2

]
1

2

The diffuse scattering was calculated using equation (1). The form factors Fup and

Fdown were computed in an early version of the program Yell, which did not yet

allow least-squares refinements. The minimization was therefore done with the program

Matlab (2011b). The final model covers correlation coefficients for the first seven shells

and size effect parameters for the first three shells resulting in a total of 28 correlation

coefficients and 12 size effect parameters.

From a statistical perspective, all refined values are highly significant. Under the
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assumption that the uncertainty of refined variables is determined only by measure-

ment statistics, the standard uncertainties were in the order of 0.0003 for substitution

correlations and 0.0002Å for the size effect. These values define the lower bound of

the refinement uncertainty and can only be achieved when the effects of all systematic

errors are perfectly accounted for.

The refined correlation coefficients were corrected for reciprocal space resolution

effects. In the case of an ideal experiment Bragg reflections would be measured as δ-

functions and the Fourier transform of reconstructions showing only sharp Bragg peaks

would be perfectly periodic. In a real experiment, however, the Bragg reflections are

broadened by resolution effects. The profiles of unsaturated Bragg peaks are therefore

a measure for the resolution (= point spread) function of the experiment. As a conse-

quence the Patterson densities get more and more attenuated and blurred the further

away they are from the origin of PDF space (Weber & Simonov, 2012). Since the ex-

perimental resolution function affects Bragg and diffuse scattering in the same way, an

empirical description of the impact of the resolution function on the Patterson densities

allows correcting resolution effects in the 3D-∆PDF space. In order to do this, the re-

constructed hki (where i is equal to integer) layers were cleaned from diffuse scattering

and from 201 over-saturated Bragg peaks leaving 348 symmetry independent Bragg

peaks. Then, the layers were Fourier transformed to obtain the (partial) Patterson func-

tions (see Fig. 4). The fact that only a subset of the Bragg reflections was available

does not significantly affect the determination of the resolution function in PDF space,

which is measured as the deviation from an ideal periodic Patterson map. Attenuation

of the Patterson peaks was obtained by summing up intensities of 5x5 pixels around

lattice points of the Patterson grid to compensate blur effects. Fig. 4b shows the atten-

uation depending on the distance in PDF space. The distribution was approximated

1 Saturated Bragg reflections: 400, 610, 620, 420, 630, 730, 540, 640, 740, 650, 101, 201, 111, 211, 541,

002, 432, 542, 303, 214
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as the product of the Fourier transforms of a Lorentzian and a Gaussian. It accurately

fits the tail of the distribution, but shows some deviation at very short distances. The

fitted value for the neighbor (0,0,0) may be up to 10% higher than the one used in our

correction. The consequence is that the scale is underestimated what may affect the

numerical values of the refined correlation coefficients by about the same magnitude.

For a discussion about the impact of the scale factor determination on the accuracy

of 3D-∆PDF investigations see (Weber & Simonov, 2012). The effect of blurring on

the results of our refinements is slightly smaller. The width of the biggest blurring ker-

nel does not exceed 1.1Å, leading to underestimated correlation coefficients of about

6%, i.e. blurring has an opposite effect on the results compared to the underestimated

scale factor. Since our incomplete resolution function correction is expected to be the

most significant systematic error in our refinement we estimate that the systematic

deviations from the correct results do not exceed 10% of the refined parameter value.

The refined correlation coefficients cuv, the attenuation factors Auv and the corrected

correlation coefficients ccorruv = cuv/Auv are listed in the Table 2. The standard uncer-

tainties of corrected correlation coefficients, which take into account both, random and

systematic errors, were calculated as σcorr
uv =

√

σ2
uv + (σr

syscuv)
2/Auv, where σuv are

the s.u.’s from the variance-covariance matrix of the least-squares refinement before

resolution effects were corrected for and σr
sys = 0.1 is the relative systematic error after

correction. A geometrical representation of the position of the ccorruv parameters values

in PDF space is shown in Fig. 5.
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Table 2. Refined correlation coefficients cuv for pairs of molecular stacks separated by a

vector (uv0). The numbers in parentheses in the third column give the s.u.’s as obtained from

variance-covariance matrix of the least-squares refinement and the fourth column indicates

the relative errors. The fifth column reports the attenuation factor Auv due to resolution

effects and the last column shows the corrected pair correlation coefficients.
u v cuv s.u./cuv Auv ccorruv

1 0 -0.2471(3) 0.0014 0.9030 -0.27(3)
2 1 0.0954(3) 0.0029 0.8333 0.114(11)
2 0 0.0968(3) 0.0029 0.8081 0.120(12)
3 1 -0.0413(3) 0.0067 0.7486 -0.055(6)
2 -1 -0.0510(3) 0.0054 0.7486 -0.068(7)
3 0 -0.0307(3) 0.0089 0.7167 -0.043(4)
4 2 0.0299(3) 0.0091 0.6758 0.044(4)
4 1 0.0154(3) 0.0177 0.6636 0.023(2)
3 -1 0.0230(3) 0.0120 0.6636 0.035(3)
4 0 0.0140(3) 0.0195 0.6300 0.022(2)
5 2 -0.0134(3) 0.0204 0.6001 -0.022(2)
3 -2 -0.0158(3) 0.0173 0.6001 -0.026(3)
5 1 -0.0064(3) 0.0423 0.5819 -0.0111(12)
4 -1 -0.0108(3) 0.0254 0.5819 -0.0185(19)
5 0 -0.0077(3) 0.0354 0.5487 -0.0140(15)
6 3 0.0072(3) 0.0378 0.5335 0.0135(14)
6 2 0.0063(3) 0.0435 0.5262 0.0119(13)
4 -2 0.0088(3) 0.0310 0.5262 0.0167(18)
6 1 0.0030(3) 0.0913 0.5053 0.0059(8)
5 -1 0.0051(3) 0.0538 0.5053 0.0101(11)
6 0 0.0052(3) 0.0523 0.4737 0.0110(12)
7 3 -0.0045(3) 0.0611 0.4678 -0.0095(11)
4 -3 -0.0054(3) 0.0503 0.4678 -0.0116(13)
7 2 -0.0028(3) 0.0977 0.4563 -0.0061(9)
5 -2 -0.0050(3) 0.0545 0.4563 -0.0110(13)
7 1 -0.0021(3) 0.1307 0.4347 -0.0048(8)
6 -1 -0.0033(3) 0.0818 0.4347 -0.0077(10)
7 0 -0.0034(3) 0.0800 0.4052 -0.0084(11)

The refined values of the size effect parameters, which describe the difference in the

contact lengths of homo- and heterochiral columns are shown in Table 3. Only the x

and y components were refined since no indication of size effect along z direction was

visible in 3D-∆PDF maps. The size effect parameters may heavily correlate with the

lattice parameters and other geometrical factors used for reciprocal space reconstruc-

tions. In order to estimate the impact of systematic errors in the determination of the

lattice constants on the uncertainty of the size effect parameters, we performed another

refinement where the crystal lattice was refined together with the size effect param-
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eters. As a result the orientation of the lattice basis vectors rotated by 0.05◦and the

lattice constant a decreased by 0.022Å from 14.114Å to 14.092Å. At the same time the

size effect parameters were reduced to about a half of their initial values (Table 3), i.e.

the size effect significantly correlates with systematic errors in the determination of the

lattice constants. Since diffuse and Bragg scattering are equally affected by systematic

errors in the reconstructions, we determined the lattice constant from the centroids of

Bragg peaks in the reconstruction in order to obtain internally consistent measures.

The estimated unit cell rotated by 0.0057◦ and the lattice constant a was equal to

14.119Å, which is by 0.005Å larger than the value 14.114(2)Å determined by XDS.

Note, that the standard uncertainty of 0.002Å determined by XDS does not take into

account the errors that are introduced by the reconstruction procedure, making the

difference 14.119Å − 14.114Å = 0.005Å a better estimate for the extent of systematic

geometrical errors.

The size effect parameters, whose s.u.’s were recalculated using the estimated uncer-

tainties of the lattice base vectors, are presented in the last two columns of the Table

3. The observed size effect is very small. The absolute value for the displacement of

the neighbor (1,0) is equal to 0.0114(14)Å. Given our simple size effect model, which

assumes that the molecular stack displaces as a whole, such a small value should be

considered of low significance, because it might compensate e.g. relaxations of the side

chains of the molecules. The size effect for larger distance pairs are even smaller and

their relative errors are bigger than for the (1,0) neighbor. It should be noted that the

R-factor is almost insensitive the size effect and becomes only by 0.3% (14.5% versus

14.2%) worse when the relaxation is removed from the model. However the presence of

the relaxation is clearly visible near the lattice points in the so-called delta-delta PDF

or 3D-∆2PDF, wich is the difference between experimental and model 3D-∆PDF.
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Table 3. Refined size effect parameters for first six neighbors, ui is relaxation of “up”-”up”

and “down”-“down” pairs, ulat is the relaxation in the model when the lattice constants are

refined along with size effect, the values of u∗
i are equal to ui, but their standard uncertainties

take into account the systematic errors induced by the reciprocal space reconstruction.
x y ux, Å uy, Å u

lat
x , Å u

lat
y , Å u

∗
x, Å u

∗
y, Å

1 0 0.0053(3) -0.0078(3) 0.0009(4) -0.0037(4) 0.0053(13) -0.0078(5)
2 1 -0.00634(17) 0.00097(17) -0.0028(2) 0.0011(2) -0.0063(10) 0.0010(6)
2 0 -0.00240(17) 0.00100(17) -0.0000(2) -0.0011(2) -0.0024(10) 0.0010(4)
3 1 0.0039(2) 0.0011(2) 0.0015(2) 0.0015(2) 0.0039(7) 0.0011(3)
2 -1 -0.0005(2) -0.0032(2) -0.0012(2) -0.0005(2) -0.0005(6) -0.0032(4)
3 0 0.00122(19) -0.00063(19) -0.0001(2) 0.0004(2) 0.0012(5) -0.0006(2)

5. Uncertainties of 3D-∆PDF refinements

The lowest achievable standard uncertainties defined by random errors are very small

(about 0.0002Å for size effects and 0.0003 for substitutional correlations). However,

due to systematic errors, such small uncertainty cannot be achieved in practice. Some

of the major systematic experimental errors are listed in the following. The errors may

be better seen and understood in 3D-∆PDF space, but they are by no means spe-

cific for 3D-∆PDF investigations. The effects may equally bias the results from other

quantitative modeling techniques relying on experimental diffuse scattering, including

Monte Carlo simulations.

Instrumental resolution function. Due to the fact that the diffuse scattering

is convolved with the experimental resolution function, the 3D-∆PDF signals become

attenuated and blurred. As seen in Fig. 4, even in the case of synchrotron experiments

the resolution function may have significant impact on the accuracy of refined param-

eters. The correlation coefficient of the first neighbor (r≈14Å) is already attenuated

by 10% and the correlation of the longest refined neighbor (r=99Å) are weakened by

60%.

Estimating and correcting the three-dimensional resolution effects in single crystal

experiments is by far more complicated than it is in the case of powder PDF investi-
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gations. However, an isotropic approximation to the resolution function either during

refinement (as it is now implemented in the program Yell) or after refinement (as it

is done in this paper) may easily be applied. Such corrections may be omitted only if

the profiles of the diffuse signals are by far broader than the Bragg peaks.

Background coming from air and Compton scattering, sample holder, glue, sample

surface or from detector noise typically manifests itself as a smooth intensity which

slowly varies in reciprocal space. If not subtracted, it is seen as a narrow peak in

the center of 3D-∆PDF space, which may lead to an overestimated scale factor and

underestimated correlation coefficients (Weber & Simonov, 2012). A careful correction

of background scattering is therefore essential for obtaining accurate results.

In the present case the background beneath the diffuse scattering could be reliably

determined from the background above or below the sharp diffuse layers. Furthermore,

presence of medium or big molecules with well-known geometry, as it is the case in

the present study, allows compensating some of the systematic errors introduced by

non-perfect background correction (Weber & Simonov, 2012).

Geometrical errors in the determination of position and shape of detector, beam

and rotation axis directions may lead to slightly distorted reconstructions, which in

turn may bias the results of diffuse scattering refinements. In the present case, the size

effect with a refined magnitude of about 0.01Å for the next neighbor was on the limit

of detection. A similar observation could have been caused by a systematic error of

about 0.02Å in determination of the crystal lattice.

Random errors. During the experiment, the intensity of diffuse scattering is mea-

sured with a certain random error mainly due to counting statistics. However, since the

total number of significant data points (frequently ≫ 106) typically exceeds the num-

ber of refined parameters (101 - 103) by many orders of magnitude, the total influence

of random errors is usually smaller than that of systematic errors.
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In the current experiment the average I/σr for diffuse scattering was only 1.96 and

not more than 9% of diffuse scattering pixels were observed with I > 2σr. However,

with approximately 0.9 million symmetry independent pixels, or 22000 measurements

per refined parameter, all correlation coefficients could be refined with high statistical

precision. For most orientational correlation coefficients the random errors were sig-

nificantly smaller than the systematic errors estimated as described above. Even for

the smallest refined correlation coefficient c71 = −0.0048(8) only about half of the

uncertainty is coming from random errors. This correlation coefficient means that the

corresponding pairs of stacks have similar orientation in 49.76(4)% of all cases, i.e. even

very small deviations from a purely random correlation of 50% could be determined

with a very small uncertainty.

We find, that for typical diffuse scattering experiments, the statistical errors may be

misguiding. They tend to be severely smaller than systematic errors and might give a

false impression of the reliability of refined parameters. They should only be considered

after all systematic errors are carefully accounted for.

6. Results and discussion

6.1. Structural results

The 3D-∆PDF refinement converged to a very low diffuse scattering R-factor of

14.2%. Both, calculated 3D-∆PDF (Fig. 3) and diffuse scattering (Fig. 2) are visually

indistinguishable from experimental ones, suggesting that the most significant local

order features are covered by our model. Neighboring molecular stacks have a strong

tendency for anti-parallel orientations with a correlation coefficient of -0.27(3), which

is close to theoretical minimum of -1/3 achievable on a hexagonal lattice. The correla-

tion coefficients within the same shells are very similar (see Fig. 5). Slightly stronger

correlations along 〈210〉 directions compared to 〈100〉 indicate that the structure has
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a small preference to locally arrange in a lamellar pattern where stacks of similar

orientations form lines along 〈100〉 type directions. The example of such local arrange-

ment is highlighted in grey in the Fig. 6. The same arrangement is reported for the

related ordered compound 1,3,5-tris(2,2-dimethylpropionylamino)benzene (Schmidt &

Wittmann, 2012).

Neighboring stacks of different or same chirality show surprisingly small relaxations

of ≈ 0.01Å. However, our model assumes that the molecules are relaxing as a whole

and we cannot completely rule out the possibility of intramolecular distortions, which

might compensate local differences in homo- and heterochiral contacts. Significant

displacive correlations (“ADP correlations”) independent from size effect distortions

could not be identified. Corresponding diffuse scattering is typically much weaker than

diffuse scattering from substitutional correlations as investigated in this paper and may

have easily been overseen in the cut-out regions between the strong diffuse honeycomb

layers. If it would appear as thermal diffuse scattering beneath the Bragg peaks it may

have been eliminated together with the Bragg peaks.

6.2. Methodological conclusions

It could be shown that 3D-∆PDF refinements are capable of providing quantitative

information up to a distance of at least 100Å. The method is very sensitive to even weak

substitutional correlations: we could reliably quantify preferred homo- or heterochiral

correlations even if deviations from a purely random distribution was less than 1%.

The uncertainty of the refined size effect amplitudes is in the order of 0.01Å.

For obtaining accurate short range order parameters special attention has to be

drawn to systematic errors. The most significant errors are caused by the experimen-

tal background and by insufficient resolution function corrections. In many cases diffuse

scattering is present as sharp streaks or layers, which allow reliable background sub-
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traction by interpolating the background close to the diffuse signals. In the case of

broad diffuse scattering special care should be taken to measure the background ex-

perimentally, e.g. by recording some frames under the same experimental conditions as

during data collection, but without the crystal. Reciprocal space resolution is currently

the most challenging correction and to the best of our knowledge has so far never been

applied accurately to single crystal diffuse scattering experiments. A simple approx-

imation of a uniform resolution function, however, can be applied efficiently either

during the refinement as it is now possible in the program Yell (Simonov et al., 2014)

or after the refinement following the procedure described in the current paper.

Estimating reliable standard uncertainties of refined parameters remains an open

question. In conventional Bragg crystallography they are estimated on the basis of

random errors of measured intensities. With the currently available experimental tech-

niques, data reduction programs and modeling possibilities the contribution of random

errors seem to be a minor bottle-neck for obtaining accurate results compared to sys-

tematic errors and therefore standard uncertainties determined from the least-squares

variance-covariance matrix tend to be significantly underestimated.
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8. Images

a

O

N

C

N-H...O

b

“up” “down”

Fig. 1. a) The tris-t-butyl-1,3,5-benzene tricarboxamide molecule. b) Molecular stacks
in the two different orientations. The helical system of hydrogen bonds is highlighted
using black and red-black lines for covalent and hydrogen bonds respectively.
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Fig. 2. a) Comparison of experimental and model diffuse scattering in the hk1 layer.
Background and Bragg peaks are removed from the experimental data. b) Left: stan-
dard uncertainties of measured pixels estimated from symmetry equivalents σexp.
Right: standard uncertainties σr after regression as described in the text. The arrows
mark the outliers which are coming from from incomplete Bragg peak subtraction.
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experiment
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a

b

I/Imax

I/Imax

Fig. 3. a) Sections from observed and calculated 3D-∆PDF maps at z = 0. b) Difference
between observed and calculated 3D-∆PDF maps (3D-∆2PDF) at z = 0. Note the
different scales of the color bars. A bigger section of the same maps can be found in
supplementary materials.
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Fig. 4. a) Fourier transform of the reciprocal space reconstruction using only unsatu-
rated Bragg peaks. Because of the reciprocal space resolution function the (partial)
Patterson function is not periodic, but attenuated and blurred at long distances.
b) Attenuation of Patterson densities due to resolution function effects. Blue dots
correspond to integrated Patterson intensity around lattice points in xy0 crossec-
tion of Patterson function. The red line corresponds to the fitted resolution function
used for correcting the data. All intermolecular vectors up to (7,0,0) at ≈100Å were
refined.
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Fig. 5. Correlation coefficients ccorruv arranged according to their position in the 3D-
∆PDF map. Note the alternation of positive and negative correlation coefficients in
subsequent shells. Only the asymmetric cone is presented.
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Fig. 6. A possible realization of the tris-butil-tricarboxamide real structure that is
consistent with the PDF model from this study. Black and white hexagons represent
stacks oriented "up" and "down" respectively. Note, that the local structure tends
to have lamellar arrangements. An example is highlighted in grey. The image was
produced using a modified Reverse Monte Carlo (Nield et al., 1995) procedure.
Instead of diffuse scattering, the RMC simulation was done against the refined 3D-
∆PDF pair correlation coefficients.
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4.4 PbTe

PbTe received much attention as a thermoelectric compound at temperatures from 400K to 800K. It
has a very low thermal conductivity, which is usually not observed in simple NaCl-type structures.
The mechanism of such peculiar behavior is a subject of debate. Using powder PDF analysis Božin
at al. [38] observed an anomalous temperature dependent broadening of the nearest neighbor Pb-Te
distance distribution. Based on this observation, they proposed that at 300K the Pb atoms move by
approximately 0.2Å from high symmetry position (4a), lowering the local symmetry of the crystal.
Such displacements form electrostatic dipoles, which arrange locally in polar nano domains.

On the other hand, recent studies using extended x-ray absorption fine structure spectroscopy
(EXAFS) showed that lead atoms occupy the high symmetry position without any observable off-
centering [39]. The authors suggest that the low temperature conductivity is caused by an unusual
structure dynamics, which becomes strongly anharmonic already at 300K. This conclusions were
also supported by inelastic neutron scattering measurements [40] and ab-initio calculations [41].

The objective of the current study was to check whether 3D-∆PDF analysis will support the
model of static off-centering or the model of anharmonic displacements. The final conclusions will
be published in a separate paper [42], here the part of study which reflects the process of 3D-∆PDF
analysis is presented.

Experiment and data preparation

An irregularly shaped fragment with an average diameter of about 42µm was used for the x-ray ex-
periments. The measurement was performed at the X06SA beam-line at SLS, Villigen, Switzerland,
equipped with a PILATUS 6M detector. The detector energy threshold for accepting x-rays photons
was set to 16 keV (energy of the primary beam: 17.5 keV) to suppress fluorescence scattering as much
as possible. The datasets were recorded at room temperature, 250K, 200K, 150K and 125K, however
only the room temperature results are described in the current chapter. For more information see
[42]. In addition 100 frames were collected under the same conditions as in the diffuse scattering
measurements, but without sample and sample holder. The frames were averaged and taken as a
model for background scattering.

The orientation matrix was determined using the program XDS [31]. The reconstructions were
performed with Xcavate [32]. Datasets were corrected for polarization and air absorption effects.
The datasets were averaged in m3̄m symmetry using the outlier rejection following the modified
procedure described by Blessing [35]. A pixel was considered an outlier if its intensity Ii was
different from median intensity of its symmetry equivalents by more than |Ii − Imedian| > 6t, where
t = median(|Ii − Imedian|)

√
[n/(n− 1)] and n is the number of averaged pixels.

The background determined by empty frame measurements was subtracted from the diffuse data.
It turned out that the background was slightly larger when the sample was out of the beam. The
reason for this is that the sample absorbs the primary beam leading to reduced air scattering after
the beam has passed the sample. The scale factor for absorption was manually adjusted to 0.9 in
order to avoid extended negative intensity regions. In the final step, the datasets were corrected for
sample absorption using the spherical absorption correction approximation.

Reconstructed Bragg peaks were only about 1 pixel sharp, but in order to make sure that any
traces of Bragg peak tails were eliminated, the volumes of 3x3x3 pixels around Bragg positions were



4.4. PBTE 73

hk0 hk3.2

Figure 4.4.1: Observed, calculated and difference intensities of diffuse scattering of PbTe at room
temperature at selected sections.

removed. The regions were not filled using the punch-and-fill method, but were kept zero and were
excluded from refinement. The final dataset contained 360× 360× 360 pixels.

Average structure

As already noted, PbTe has a NaCl-type structure. The atomic displacement parameters of Pb
(∼0.0260(2)Å2 at 293K) are very high for such a heavy atom. This behavior might be interpreted
as a sign of static disorder, but a careful examination of the average structure revealed that in the
current case Pb atoms more likely occupy the high symmetry position than split position along
<x00>, <xx0> or <xxx> directions. For further details about the average structure description
see [42].

Diffuse scattering and the 3D-∆PDF

Diffuse scattering is present as wide three-dimensional bands oriented perpendicular to the crystal
axes (Fig. 4.4.1). The symmetry of diffuse scattering is m3̄m, i.e. the same as for the average
structure. At different temperatures the diffuse scattering shows essentially the same appearance,
only the overall amount of diffuse scattering decreases relative to the integral Bragg intensities when
lowering the temperature.

The 3D-∆PDF shows the typical signature of atomic displacement correlations (Fig 4.4.2). A
signal with characteristic negative-positive-negative profile is found at each interatomic vector po-
sition [43]. This means that displacements of both heterogeneous Pb-Te as well as homogeneous
Pb-Pb or Te-Te pairs are correlated.

In the final 3D-∆PDF model all significant displacement correlations were refined. The pairs
Te-Te and Pb-Pb perfectly overlap and could not be refined separately. The displacement correlation
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P/Pmax

Figure 4.4.2: 3D-∆PDF of PbTe, xy0 crossection.

coefficients for such pairs were constraint to be equal. This is a justified assumption because the
3D-∆PDF signals are dominated by Pb-Pb pairs since Pb has a stronger scattering power and also
larger atomic displacement parameters.

Totally 716 pairs in the region x ≤ 10, y, z ≤ 3, in the asymmetric cone 0 ≤ z ≤ y ≤ x were
refined. If treated independently, the correlations would comprise ∼3500 parameters. Full matrix
Levenberg-Marquardt algorithm implemented in Yell requires all Jacobians to be simultaneously
stored in the operating memory. Thus, the memory requirement scales as the number of pixels times
the number of parameters. In the current case approx. 1000GB would be required to perform a
full refinement—a quantity far beyond our computational capacities. It was found, that homo- and
hetero-atomic correlations decay exponentially along ⟨100⟩ directions. This assumption failed only
for very short interatomic vectors. The final model was as follows. The correlation matrices Corrmn

uvw

were refined independently for interatomic vectors (0.5 0 0), (1 0 0), (1.5 0 0), (2 0 0), (2.5 0 0)
and (3 0 0). The correlation coefficients of other pairs were set according to the relation Corrmn

uvw =
amn
vw ⊙exp(−bmn

vw u) where Corrmn
uvw is the correlation tensor amn

vw and bmn
vw are symmetric 3×3 matrices,

the symbol ⊙ represents element-wise multiplication, (u, v, w) are the average interatomic vectors,
the indices mn represent either Pb-Pb or Pb-Te pairs. The final model contained 363 independent
parameters. Despite the number of parameters was reduced significantly, memory limitations still did
not allow to refine all parameters simultaneously. The least-squares refinements were therefore done
in blocks of about 30 parameters and repeated until no further improvements could be observed.
Single least-squares runs took about one to two hours on a modern desktop computer. The full
refinement took about two days.
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Figure 4.4.3: a) Refined atomic displacement correlation coefficients represented as ellipsoids. The
correlation for the zero neighbor is equal to 1 by definition, and decrease for further neighbors. Note
that the joint atomic displacement parameters have the inverse behavior - they are equal to zero for
the zero neighbor and slowly increase for the further neighbors. b) Correlations Cor11 for first ten
neighbors along x00 direction.

Results

Refinement against the room temperature dataset converged with R=0.14. The residual 3D-∆2PDF
maps contained obvious indication for anharmonicity of all the pairs along ⟨100⟩ direction (Fig 4.4.4).
This is in a very good agreement with the results of the EXAFS study [39].

The most significant pair correlations are shown as ellipsoids in Fig 4.4.3a. In agreement with
the qualitative interpretation it is seen that the correlations are strongest along ⟨100⟩ directions with
dominating longitudinal correlations. Interestingly, the homo-atomic pairs generally show stronger
correlations than hetero-atomic pairs (Fig 4.4.3b). The structural interpretation of the correlation
coefficients is beyond the scope of the current chapter and will be published elsewhere.

Discussion

The current work supports the assumption that the average structure of PbTe is best described by
the Pb atom occupying the high symmetry position. Diffuse x-ray scattering can be well modeled by
assuming only the correlated atomic displacements. This contradicts the static displacement model
of Božin at al. [38] and supports a model expressed in [39, 40, 41] where diffuse scattering has a
purely dynamic origin. The most plausible reason for the low thermal conductivity of PbTe is thus
the anharmonic dynamics of the crystal.

It has been shown, that 3D-∆PDF method can be used to probe the crystal dynamics. It
provides very detailed and reliable information about strength and direction of atomic displacement
correlations. Though it does not provide phonon dispersions in reciprocal k-space, 3D-∆PDF allows
to investigate the dynamic phenomena in real space, which might prove useful for complicated
examples with strongly anharmonic or localized vibrations.
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Figure 4.4.4: Observed, calculated and difference 3D-∆PDF densities of the xy0 layer at room
temperature. The relatively strong difference densities at x, y > 3 in the enhanced difference density
quadrants represent densities outside the volume covered by the model. The negative densities at
large distances are coming from artifacts due to removing the Bragg peaks.



Chapter 5

Conclusions and outlook

5.1 Comparison of the 3D-∆PDF approach with other diffuse
scattering methods

Direct modeling

Yell refinements, similarly to average structure refinements, may result in non-physical correlation
models, which are not compatible with any real structure model. For example, in unfavorable
cases, joint probabilities can be refined to negative values or joint atomic displacement parameters
can converge to non-positively definite matrices. There is also a possibility of more subtle errors,
which are significantly harder to spot. For example, short range order parameters, even though
meaningful individually, could be impossible to be realized collectively. The models obtained from
MC simulations can be trivially examined for presence of any unphysical behavior and rarely contain
such problems.

On the other hand, MC refinements have two serious issues. First, MC models are hard to
construct. A user is required to guess a model that is flexible enough to describe the disorder
at hand. If a model covers real structure properties only partially, it is often very hard to identify
incomplete or wrong parts of the model. Comparison of the model and experimental diffuse scattering
may in principle provide such information, but an expert knowledge is required to extract it. Thus,
in practice, identification of a proper real structure model is usually depending on inspiration and
many cycles of trials-and-errors. Second, MC refinements are computationally very slow. It is not
uncommon that refinements take weeks to converge [16].

3D-∆PDF refinements do not require a full representation of a crystal. Only the average structure
and a list of correlations are needed for describing local order. Diffuse scattering calculations from
a 3D-∆PDF model is considerably faster than from MC models, which allows very quick tests of
various models. 3D-∆PDF maps are very easy to interpret, since correlation from each interatomic
pair produces a predictable pattern in a well localized part of the map. The model can naturally be
developed step by step starting from the strongest correlations. Additional correlations are added
gradually only after their effect becomes clearly visible in the so-called delta-delta pair distribution
function (3D-∆2PDF), the difference between experimental and calculated 3D-∆PDF.

Overall, the 3D-∆PDF can be considered as a complementary approach to MC modeling. In the
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cases where MC simulations are desired, it can be used prior to MC refinements. It allows a quick
understanding of the origin of diffuse scattering and provides important information about the types
of correlations needed for successful MC simulations.

Normal mode analysis

The PbTe example demonstrates that the 3D-∆PDF method is capable of refining diffuse scattering
of a purely dynamic origin. As a result, it provides a list of atomic displacement correlation parame-
ters. Given the phonon dispersion curves of a crystal are available, the ADP correlation coefficients
can be calculated using eq. (25) in [20]. Thus, the model can be tested not only against diffuse
scattering, but also against the results of 3D-∆PDF refinements.

Analytical methods

The 3D-∆PDF can be considered as an extension of Warren-Cowley formalism. Our approach works
not only for single atoms, but also for molecules. In addition to substitutional correlations and
size effects, our approach adds atomic displacement correlation as an additional short range order
parameter. Diffuse scattering calculated by Yell is very similar to diffuse scattering calculated from
Warren-Cowley analytical formulas except the latter uses the first term of Taylor series with respect
to size effect parameters. For large values, the results of the analytical linear approximation might
be inconsistent with direct calculation. In such cases the program Yell provides more accurate
results. Since currently there is no specialized program which can perform Warren-Cowley analysis,
the program Yell may be used for such purposes.

Powder pair distribution function

The 3D-PDF is a natural extension of the radial distribution function which is used in powder 1D-
PDF refinements. However, the availability of three dimensional diffuse scattering allows several
important improvements. First, in three dimensional space it is much easier to separate Bragg and
diffuse scattering. Bragg scattering can be analyzed with traditional methods to yield accurate aver-
age structures, while diffuse scattering is used separately to obtain the short range order correlations
using the average structure as a constraint. Second, signals from pairs with interatomic vectors hav-
ing similar length but different orientations do not overlap in three dimensions. As a consequence,
the number of overlapping peaks does not increase with increasing interatomic vectors. In fact, in
the 3D-∆PDF approach the opposite is true. Since correlations decay with increasing interatomic
vectors, the total amount of 3D-∆PDF signals actually decreases at high |r| (see e.g. Fig. 4.4.4). It
allows refinement of correlations to very large distances only limited by the experimental resolution
function. In our experience interatomic vectors of up to 100Å may be refined easily and reliably if
high quality synchrotron data are available.

From experimental perspective, collecting diffuse scattering from powders is easier and less time
consuming. The technique is well suited for non-ambient conditions, phase transitions and multy-
phase samples. In addition, 1D-PDF is applicable not only to crystalline materials, but also to
nano-materials and liquids.
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5.2 Summary and outlook

In this thesis the three dimensional difference pair distribution function (3D-∆PDF) method is
introduced. The method allows investigating diffuse scattering from single crystals and gives access
to information about the real crystal structure. The program Yell for performing 3D-∆PDF
refinements was implemented and released. Owing to efficient least square minimization algorithm
and the fast FFT-based method for diffuse scattering calculation, large datasets can be refined in a
matter of minutes or hours.

The approach was successfully applied to four disordered crystal structures. The crystals covered
a broad range of systems: organic, inorganic and metallic materials. They showed an almost complete
set of diffuse scattering types, including one-, two- and three-dimensional diffuse scattering; static
and dynamic diffuse scattering; diffuse scattering mostly governed by substitutional correlation, size
effect and atomic displacement correlations. Despite the wide variety of systems, all of them were
described using the same simple and coherent formalism.

The tris-t-butyl-1,3,5-benzene tricarboxamide example demonstrates that 3D-∆PDF refinements
provide reliable numerical values of short range order parameters with small estimated errors. The
accuracy of the refined parameters is mostly determined by the systematic errors introduced during
data reduction and can be further improved by careful experimental design and data preparation if
needed.

In order to make future diffuse scattering analysis simpler, several tools have to be implemented.
The most important issue is reciprocal space reconstruction. Software suites for Bragg peak inte-
gration are typically designed to visually inspect the quality of the experiment and are inadequate
for quantitative diffuse scattering analysis. The program Xcavate [31], which is frequently used
in diffuse scattering analysis, provides high quality reconstructions, but works only for restricted
experimental geometries and in orthogonal reciprocal space coordinates. Development of a recon-
struction program for user-friendly high quality reciprocal space reconstructions is essential for a
broad adaptation of diffuse scattering analysis.

Another area for which more advanced tools are desirable is data reduction, which includes Bragg
and background subtraction, background correction and symmetry averaging. Diffuse scattering
from different crystals varies dramatically and so do methods for data reduction. It is unlikely that
a general tool that would fit to all demands can be created. However, several simple procedures
for outlier rejections, integration of diffuse streaks and planes, background estimation from crystals
with 1D and 2D disorder and from experimentally measured frames are relatively easy to implement
and can help providing datasets of a sufficient quality.

An unexpected finding in the current work is the importance of a proper determination of the
scale coefficients. When refined from diffuse scattering alone, the scale coefficient is prone to errors
due to incorrectly subtracted background. Errors in the scale coefficient almost perfectly correlate
with a monotonic increase or decrease of the values of all short range order parameters and are very
hard to identify. This problem is not specific to 3D-∆PDF refinements, but affects any method
which utilizes single crystal diffuse scattering. A simple way to overcome this problem is to use
the scale coefficient from the average structure refinement. In order to do this straightforwardly
it is crucial, that the programs for Bragg peak integration and reciprocal space reconstruction
will be implemented in a consistent way and will deliver common scale coefficient for diffuse and
Bragg intensity. This will allow to translate the reliable scale coefficients from the conventional
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crystallographic programs like Shelx [44] or Jana [45] to diffuse scattering model and fix it without
refinement, thus removing the influence of systematic errors.

The program Yell can also be improved in a number of ways. The speed of refinement can
be accelerated for an important special case of purely substitutional molecular disorder by pre-
calculating molecular form factors. The memory requirements can be decreased by utilizing the
Laue symmetry and also by taking less memory demanding minimization algorithms for example the
conjugate gradient descent [46]. The support for average structure (space group) and real structure
(layer, rod and point groups) symmetry may be improved. This implies automatic calculation of
multiplicity, selection of the symmetry independent part of the correlations and restriction of short
range order parameters. Also a tool for visualization of diffuse scattering, the 3D-∆PDF, and the
refined parameters is currently missing.

Overall, the 3D-∆PDF method has been developed to a stage at which it can be successfully
used by non-experts in the field of diffuse scattering. The method is fast and intuitive and can be
applied to a wide range of disorder problems.



Appendix A

Script for generating Yell input file for
Ge4Bi2Te7

The following script was used to calculate marginal average probabilities of various layers and gener-
ate SubstitutionalCorrelations for the first 35 neighbors in the Ge4Bi2Te7 covered in the chapter
4.2. The script is written in Matlab and relies on symbolic computation toolbox.

%% Set up the stacking model.

%Define different stacking blocks.

%The one letter code is used to describe each stack, the correspondence

%of this letters with notation in the article is as follows:

%V - V

%u - Te^1

%U - GB^1

%p - Te^2

%P - GB^2

%N - GB

%n - Te

%O - GB_2

%o - Te_2

%D - GB_1

%d - Te_1

stacks={’VuUnDd’,’VuUpNoDd’,’VuUpPnOoDd’,’VuUpPnNnOoDd’,’VuUpPnNnNnOoDd’,’VuUpPnNnNnNnOoDd’,’

VuUpPnNnNnNnNnOoDd’,’VuUpPnNnNnNnNnNnOoDd’,’VuUpPnNnNnNnNnNnNnOoDd’,’VuUpPnNnNnNnNnNnNnNnOoDd

’,’VuUpPnNnNnNnNnNnNnNnNnOoDd’,’VuUpPnNnNnNnNnNnNnNnNnNnOoDd’,’VuUpPnNnNnNnNnNnNnNnNnNnNnOoDd

’};

%setup probabilities

syms p2 p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 real

%Enforce the sum of probabilities to be equal to 1

p15 = solve(’p3+p4+p5+p6+p7+p8+p9+p10+p11+p12+p13+p14+p15=1’,’p15’);

%Define probabilities of stacks

probabilities = [p3 p4 p5 p6 p7 p8 p9 p10 p11 p12 p13 p14 p15];

%% calculate marginal probabilities

possible_layers = ’UPDOVNupdon’;
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l2ind=@(l)(find(possible_layers==l,1));

marginal_probabilities=sym(zeros(1,length(possible_layers)));

for i=1:length(stacks)

stack=stacks{i};

probability=probabilities(i);

for ii=1:length(stack)

marginal_probabilities(l2ind(stack(ii))) = probability+marginal_probabilities(l2ind(stack(

ii)));

end

end

marginal_probabilities=marginal_probabilities/sum(marginal_probabilities)*2;

fprintf(’Please paste the following probabilities in your model:\n’)

marginal_probabilities=sym_matrix_to_string(marginal_probabilities);

for i=1:length(marginal_probabilities)

fprintf(’p(%s)=%s\n’,possible_layers(i),marginal_probabilities{i})

end

%% Calculate layers after void

%Parameter which defines how far to calculate the model

last_neighbor_to_calculate = 35;

after_void_probabilities=sym([]);

valid_till=0;

for i=1:length(stacks)

sizes(i)=length(stacks{i});

end

possible_layers = ’UPDOVNupdon’;

l2ind=@(l)(find(possible_layers==l,1));

% Calculate distribution of different layers after void.

while(valid_till<last_neighbor_to_calculate)

valid_till = size(after_void_probabilities,1) + min(sizes);

res = sym(zeros(valid_till,length(possible_layers)));

for i=1:length(stacks)

stack=stacks{i};

p=probabilities(i);

for j=1:min(length(stack),valid_till)

res(j,l2ind(stack(j)))=p+res(j,l2ind(stack(j)));

end

if(j<size(res,1))

res(j+1:end,:)=res(j+1:end,:)+p*after_void_probabilities(1:size(res,1)-j,:);

end

end

after_void_probabilities=res;

valid_till

end

%% calculate and save definition of correlations to file correlations.txt

fid = fopen(’correlations.txt’,’w’);

resulting_correlation_matrix={};

%fid=1; %output on screed for debug

for neig=0:35;

fprintf(’calculating neighbor number %i\n’,neig);
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%this block calculates variable pair_probabilities which contains

%symbolic equations of pair probabilities

pair_probabilities=sym(zeros(length(possible_layers)));

for i=1:length(stacks)

stack=stacks{i};

len=length(stack);

probability=probabilities(i);

probs=sym(zeros(len,length(possible_layers)));

for ii=1:len

probs(ii,l2ind(stack(ii)))=1;

end

probs=cat(1,probs,after_void_probabilities);

for ii=1:len

pair_probabilities=pair_probabilities+probability*probs(ii,:)’*probs(ii+neig,:);

end

end

% Setting a couple of variables for displacements

disps={’0,0’,’1/3,2/3’,’-1/3,1/3’};

disps=disps([1 3 2]);

disp = disps{mod(neig,3)+1};

gap = ’ ’;

% Depending on which neighbor it is, even or uneven from the

% pair_probabilities extract the variable pp or two variables -

% pp_tete and pp. Variable pp is equal to joint probabilities between main layers

% in even case and main-to te layer in uneven case pp_tete is the pair

% between Te layers, only defined for even neighbors

if(mod(neig,2)==0)

pp_tete = pair_probabilities(7:11,7:11)’;

string_pp_tete=sym_matrix_to_string(pp_tete/sum(pp_tete(:)));

pp=pair_probabilities(1:6,1:6)’;

else

pp=pair_probabilities(1:6,7:11)’;

end

% Normalize pp to sum up to one, simplify so that expression is as

% short as possible and convert from symbolic respresentation to a cell

% array containing strings

pp=pp/sum(sum(pp));

pp=simplify(pp);

string_pp=sym_matrix_to_string(pp);

%Generate output
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if(mod(neig,2)==0)

if neig==0

multiplicity=0.5;

else

multiplicity=1;

end

%Gb-Gb kind of pairs

fprintf(fid,’[#Void-Void %i\n (%s,%i/6)\n multiplicity %g\n substitutional_correlation(

Var,Var,%s,%s,%s,%s,%s,\n%s %s,%s,%s,%s,%s,\n%s %s,%s,%s,%s,%s,\n%s %s,%s,%s,%s,%s,\n%

s %s,%s,%s,%s,%s)\n substitutional_correlation(Var2,Var2,%s,%s,%s,%s,\n%s %s,%s,%s,%s

,\n%s %s,%s,%s,%s,\n%s %s,%s,%s,%s)\n]\n’,...

neig,disp,neig,multiplicity,string_pp{1,1},string_pp{1,2},string_pp{1,3},string_pp

{1,4},string_pp{1,5},gap,...

string_pp{2,1},string_pp{2,2},string_pp{2,3},string_pp{2,4},string_pp

{2,5},gap,...

string_pp{3,1},string_pp{3,2},string_pp{3,3},string_pp{3,4},string_pp

{3,5},gap,...

string_pp{4,1},string_pp{4,2},string_pp{4,3},string_pp{4,4},string_pp

{4,5},gap,...

string_pp{5,1},string_pp{5,2},string_pp{5,3},string_pp{5,4},string_pp

{5,5},...

string_pp_tete{1,1},string_pp_tete{1,2},string_pp_tete{1,3},

string_pp_tete{1,4},gap,...

string_pp_tete{2,1},string_pp_tete{2,2},string_pp_tete{2,3},

string_pp_tete{2,4},gap,...

string_pp_tete{3,1},string_pp_tete{3,2},string_pp_tete{3,3},

string_pp_tete{3,4},gap,...

string_pp_tete{4,1},string_pp_tete{4,2},string_pp_tete{4,3},

string_pp_tete{4,4});

else

% the generator to GB-Te kind of pairs.

fprintf(fid,’[#Void-Te %i\n (%s,%i/6)\n multiplicity 2\n substitutional_correlation(Var

,Var2,%s,%s,%s,%s,%s,\n%s %s,%s,%s,%s,%s,\n%s %s,%s,%s,%s,%s,\n%s %s,%s,%s,%s,%s)\n]\n

’,...

neig,disp,neig,string_pp{1,1},string_pp{1,2},string_pp{1,3},string_pp{1,4},string_pp

{1,5},gap,...

string_pp{2,1},string_pp{2,2},string_pp{2,3},string_pp{2,4},string_pp

{2,5},gap,...

string_pp{3,1},string_pp{3,2},string_pp{3,3},string_pp{3,4},string_pp

{3,5},gap,...

string_pp{4,1},string_pp{4,2},string_pp{4,3},string_pp{4,4},string_pp

{4,5});

end

end

fclose(fid);

fprintf(’everything is calculated, check file correlations.txt\n’)
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Yell reference manual

This appendix presents the Yell online manual. A version of manual with hyperlinks is available in

the html format from the program website https://github.com/YellProgram/Yell or by the following

short link: http://goo.gl/BBho1l.
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Installation

Yell is distributed as a self -contained executable. Just copy it in a f older where the shell can f ind it.
Instructions f or building the binary f rom the source f iles will be added later.

How to run Yell

Yell is a simple console application. In order to run it, open a terminal, navigate to the f older with the
model.txt  f ile and type

yell.exe

(on Windows) or

yell 

(on Mac).

Input files



Yell data format for arrays

All input arrays should be presented in hdf 5 f ormatted f iles. The hdf 5 f ormat is commonly used in
scientif ic applications to hold large data arrays. It is not editable by hand, but the libraries f or
preparing and manipulating  the f iles are available f or most of  the sof tware platf orms including
Matlab, Python, Java, C++ and R.

Each Yell-f ormatted hdf 5 f iles should have the f ollowing structure: the root /  of  the f ile is expected
to have attribute ‘f iletype’ equal to ‘Yell 1.0’ and the dataset should be located at the path ‘/data’
within the f ile. The array should have row-major order. Though, in principle, hdf 5 f iles may contain
several datasets, Yell only expects one dataset per f ile.

Here is code to save f ile in this f ormat in Matlab:

function write4yell(filename,dataset)
  dataset=permute(dataset,[3 2 1]); % Matlab uses column-major order, 
thus we need to permute dimensions
  h5create(filename,'/data',size(dataset));
  h5write(filename,'/data',double(dataset));
  h5writeatt(filename,'/','filetype','Yell 1.0');

Allowed array input files

The f ollowing f iles are used

experiment.h5 File containing the experimental dif f use scattering  (in reciprocal space).
Required f or ref inement.
weights.h5 File containing the least-squares weights (in reciprocal space). Optional. If  not
present unit weights are used.
reciprocal_ space_ multiplier.h5 File containing the array that will be multiplied to the
calculated dif f use scattering  (in reciprocal space). Usef ul f or zeroing-out the model intensities
in places where experiment was not measured. Optional.
pdf _ multiplier.h5 File containing the array that will be multiplied to the calculated PDF. Usef ul
to simulate resolution f unction ef f ects. Optional.

All arrays must have the same shape along all dimensions

The f ollowing indicates at which stages the arrays are used: 
1. Dif f use scattering  is calculated. 
2. If  available, PDF multipliers are applied in PDF space 
3. If  available, reciprocal space multipliers are applied in reciprocal space 



4 . The resulting  dataset is called ‘model intensities’

During a ref inement  is used f or minimization.

No input arrays f iles are required if  the ref inement option is switched of f  (see below).

model.txt

This f ile contains the def inition of  the local structure model. For description see ref erence.

Output files

The output f iles are also in hdf 5 f ormat. The f ollowing shows a Matlab f unction which reads in the
data:

function res=read_from_yell(filename)
    res = h5read(filename,'/data');
    res = permute(res,[3 2 1]); #Transform from row-major order

Reciprocal space datasets

model.h5 Dif f use scattering  calculated f rom the model. If  a ref inement is perf ormed,
model.h5  is calculated f rom the f inal parameters; ref ined intensities are scaled to the

experimental intensities.
average.h5 Full scattering  calculated f rom average pairs. Only takes pairs touched by
correlations as def ined in model.txt, i.e. broad Bragg peaks and truncation ripples are possible.
Scaled to the experimental intensities.
f ull.h5 Full scattering  f rom real structure pairs. Only takes those pairs which were touched by
correlations. Scaled to the experimental intensities.

weights ∗ ( − )Iexperiment Imodel



∆PDF space datasets

All of  this datasets are calculated only if  dif f use scattering  grid allows FFT. 
The datasets are scaled to be in , if  the multiplicity is set correctly.

delta-pdf .h5 Modeled ∆PDF.
exp-delta-pdf .h5 Experimental ∆PDF, i.e. the normalized Fourier transf orm of  the dif f use
intensities provided by experiment.h5.
delta-delta-pdf .h5 ∆ PDF = ∆PDF  - ∆PDF .

Keywords reference

File format

The f ile model.txt  is a plane text f ile which describes the crystal model. The f ile contains the
f ollowing sections:

preamble  def ines parameters which inf luence the calculation
UnitCell section def ines the average crystal structure
Modes section def ines the possible motions of  the atoms or molecules
Correlations section def ines the short-range ordering in the crystal
in epiloge  the user may request Yell to print various expressions

The input f ile contains square brackets [  ]  f or grouping various elements, assignments f or
providing aliases to the various parts of  the structure and also variables and arithmetic expressions in
order to express constraints.

The parser in Yell is quite f lexible considering white spaces. Space, tabulation, newline character and
comment are all considered whitespace. In most parts of  the input f iles the whitespace characters are
not required, but user can add them to improve the readability.

Comments

Comments in Yell start with a sharp sign #  and go until the end of  the line.

/e2 A3

2
exp model



#this is a comment
Cell 1 1 1 90 90 90  #this is also comment

Assignments

The parts of  the sturucture - atoms, groups of  atoms, variants and modes can be g iven aliases f or
the later ref erence in the model. The aliases are expressed as assignments

Cu1_alias = Cu 1  0 0 0  0.01

Formulas and variables

Arithmetic expressions

The parser of  Yell allows the arithmetic expressions in the place of  almost any number in the input f ile.
The expressions will be calculated during dif f use scattering  calculation according to usual
mathematical rules. Thus the f ollowing line

 Cell   6-1   1+2*2   4       9*(15-5)   3*3*2*5   120

is equivalent to

Cell  5 5 4    90 90 120

Expressions can contain the operators +  -  *  / , brackets () , and special mathematical f unctions
exp  log  sin  cos  sqrt  abs  mod  and pow . The whitespace characters are not  allowed within

f ormulas and will invoke an error.

Variables

User can def ine variables to use in arithmetic expressions. The def inition of  variables is similar to
many programming languages:



a=1;
b=12*3;

Variable def inition should end with semicolon ; . The whitespace characters are not  allowed in the
variable def inition, e.g . the expression b = 12 * 3;  is illegal.

Valid names f or variables start with upper or lower case letters, names may also contain numbers and
underscore. The names are case sensitive. Here are the examples:

A=1;
shift_along_111=1;

The variables can then be used in any arithmetic expression. In any case float algorithms are used.

a=12.1;
c=a/2;
alpha=90;
gamma=60;

Cell a a c alpha alpha gamma*2

Variables can be def ined only in the “top level” of  the input f ile, i.e. in preamble, epilogue and at the
top levels of  the def initions of  UnitCell  Modes  and Correlations . Here is an example which
explicitly describes where the variables can and cannot be def ined

a=1;
Cell 10 10 10 90 90 90
b=1; #Here is ok
DiffuseScatteringGrid -10 -10 -10  0.5 0.5 0.5  20 20 20
UnitCell
[
  c=1; #Here is ok
  Var = Variant
  [
    #but not here
    (p=0.5) #this is ok because it is a keyword expression and not an 
assignment to a variable 'p'
    [
      #not here
      Ag 1  0 0 0   0.02
    ]
    (p=0.5)
    Void
  ]
  d=1; #Here is ok
 ]
Modes
[



e=1; #Here is ok
]
Correlations
[
  f=1; #Here is ok
  [(0,0,0)
    #not here
    SubstitutionalCorrelation(Var,Var,0.5)
  ]
]
g=1; #Here is ok
Print "g=" g

Refinable variables

User can also def ine a variable as a refinable variable. Such variables will be used in the least squares
ref inement procedure. Their value will be optimized in order to f it experimental data. Other variables,
which were not def ined as ref inable, but depend on ref inable variables in the course of  ref inement will
always be updated, based on the actual value of  ref inable variables they depend upon.

Ref inable variables should be ref ined in the preamble of  the f ile, with RefinableVariables
keyword. Example:

RefinableVariables
[
a=10; #This variable will be changed in the course of a refinement
]
b=a*2; #This variable will change its value if the value of variable 'a' is 
modified during the refinment. 

Ref inable variables can not  be initialized by expressions:

RefinableVariables
[
a=10/2; #Error
]

Special functions that may be used in expressions

exp(x)   
log(x)  Natural logarithm. Invokes error, if  . 
sin(x)  sine 

= ex

x ≤ 0



cos(x)  cosine 
sqrt(x)  . Invokes error if  . 
abs(x)   
mod(x,y)   
pow(x,y)

Preamble

The f irst part of  model.txt  contains general settings of  the calculation, like def inition of  the unit
cell, grid f or dif f use scattering  calculation, point group, def inition of  ref inable variables, the
calculation method and several parameters which can af f ect the calculation and ref inement process.

The mandatory f ields are Cell  DiffuseScatteringGrid  and PointGroup , other keywords can
be omitted. In such cases the program will use def ault values.

Cell

Mandatory f ield. 
Def ines the unit cell of  the crystal. 
Format: Cell      . 
Units: Ångströms and degrees. 
Example:

Cell 5.406 5.406 5.406  90 90 90

DiffuseScatteringGrid

Mandatory f ield. 
Def ines the grid on which the dif f use scattering  should be calculated. In ref inements experimental
data and weights are to be provided with the same grid def inition.

The f ormat is the f ollowing:

DiffuseScatteringGrid lower_limit_x lower_limit_y lower_limit_z  
                      step_size_x step_size_y step_size_z  
                      number_of_pixels_x number_of_pixels_y 
number_of_pixels_z

= x√ x < 0
= |x|

= x mod y

= xy

a b cα β γ



where lower_limits  are the minimal h  k  and l  indices of  the grid, step_sizes  are the
distances between lattice points in units of  h  k  and l , and number_of_pixels  are the total
number of  pixels along each direction.

The main axes of  the grid can only be def ined along the main axes of  the unit cell. If  one needs to
calculate the dif f use scattering  grid along special directions, like, f or example 111 , one has to
transf orm the unit cell accordingly.

Yell uses a Fast Fourier Transf orm (FFT) algorithm f or switching between reciprocal and PDF space.
This adds two constraints on the dif f use scattering  grid:

1. number of  pixels along each dimension must be even
2. the orig in of  reciprocal space must be in the pixel with coordinates

(number_of_pixels_x/2+1, number_of_pixels_y/2+1, number_of_pixels_z/2+1)

The conditions are a bit unusual f or anyone who did not have experience with the FFT bef ore. The
arrays with uneven number of  pixels and the central pixel in the center seems more natural. In order to
use FFT such “natural” datasets should be stripped of  the last planes along x y and z direcitons.

The FFT algorithm allows to calculate cross-sections through the center of  reciprocal space. Such
cross-sections in reciprocal space correspond to the projection of  the whole structure to a plane, or a
line in PDF space. If  the cross-section is calculated the number of  pixels is allowed to be equal to 1
along some axis, then the step_size  along the corresponding dimension is ignored, the
lower_limit  should be equal to 0.

Examples:

DiffuseScatteringGrid -5 -5 -5  0.1 0.1 0.1  50 50 50   #Usual three-
dimensional case
DiffuseScatteringGrid -10 -10 0   0.1 0.1  1   20 20 1  #hk0 section of 
diffuse scattering

If  the grid is not consistent with the above mentioned rules, dif f use scattering  can be calculated using
the direct calculation algorithm and ref inement can still be perf ormed. However, the FFT algorithm is
required if  you want to

apply pdf _ multipliers.h5
use f ast dif f use scattering  calculation algorithm
obtain delta-pdf .h5, exp-delta-pdf .h5 and delta-delta-pdf .h5.

The f ollowing example only works with ‘exact’ calculation method:

DiffuseScatteringGrid 0 0 0  0.2 0.2 0.2  30 30 30      #Only works with 
'exact' calculation method

LaueSymmetry



Mandatory f ield. 
Possible values: m-3m  m-3  6/mmm  6/m  4/mmm  4/m  -3:R  -3:H  -3m:H  -3m:R  mmm  2/m
2/m:b  -1

Def ines the Laue group of  the crystal.

Laue groups which have both rhombohedral and hexagonal settings are noted by the :R  or :H
letters. The group 2/m  also have two standard settings, with unique c  and with unique b . They are
called 2/m  and 2/m:b  respectedly. Non-crystallographic symmetry, e.g . f ive-f old rotation axes, are
not supported by the program, but can be provided explicitly by the def inition of  correlations (see
below).

Scale

def ault value: 1

Scaling  coef f icient between model and experiment; always ref ined.

RefinableParameters

def ault: empty [ ]

Registers variables in the square brackets to be used during ref inement. The variables cannot be
initialized with expressions.

Example:

RefinableVariables
[
  a=1;
  b=12;
]

The scale coef f icient, which is also ref ined, should not be def ined here, since it has a special keyword.

RecalculateAverage

possible values: true  false  
def ault value: true

Controls whether the average PDF of  the structure should be recalculated during ref inement. If  set to



false  the average PDF is only calculated in the beginning of  ref inement and kept unchanged
throughout the ref inement.

In cases, when non of  the ref ined variables may inf luence the average interatomic vectors, because
the average structure is very well known, the recalculation can be turned of f . This speeds up the
ref inement by the f actor of  two. It is saf e to do so, when ref inable variables do not appear in sections
UnitCell , Modes , and in Correlations  in the brackets (1,0,0)  and in Multiplicity .

DumpPairs

possible values: true  false  
def ault: false

When turned on, prints all the interatomic pairs used to calculate dif f use scattering  in the program
output.

PrintCovarianceMatrix

possible values: true , false  
def ault: false

When turned on, prints the f ull ref inement covariance matrix in the program output.

CalculationMethod

possible values: exact  approximate  
def ault value: exact

Selects the dif f use scattering  calculation method. Yell currently has two calculation methods:

exact  uses direct sum over all pairs, as shown in this f ormula. Calculation is done in reciprocal
space.
approximate  goes through real space. This works much quicker because f or each interatomic

pair it only calculates a certain block where the signal is signif icant (controlled by f lag
FFTGridSize ) and ignores most of  the PDF space , where the signal is almost zero. Details

are described in (Simonov et al. in. prep.)

The approximate algorithm provides a signif icant speedup, but introduces errors. It is adviced to
properly set up the approximate  algorithm in the f irst stages of  ref inement, but always check the
results with exact  ref inement bef ore publishing.



Parameters controlling approximate diffuse scattering
calculation

FFTGridSize

expects: three numbers 
def ault: 16 16 16

Controls the size of  parallelepiped in pixel units to calculate the PDF signal of  a pair. Bigger values g ive
better accuracy, smaller provide more speed. The values should not be bigger than the size of  the
dataset along the same dimension.

FFTGridPadding

expects: three numbers 
def ault: 0 0 0

Def ines the padding in the approximate algorithm.

Prior to PDF calculation, Yell extends reciprocal space by the selected number of  pixels; af ter the
calculation the padding is cut.

Frequently, the FFT approximation method has the strongest errors close to the edges of  reciprocal
space. The padding expands the reciprocal space putting  the errors outside the region of  interest.

Details are described in (Simonov et al. in. prep.).

PeriodicBoundaries

expects: three booleans 
def ault: true true true

During the approximate  dif f use scattering  calculation allows not to periodically repeat the ∆PDF
signals which lie outside the calculated PDF grid along specif ied directions.

Why this might be interesting  
If  the correlations are very long in PDF space, one is f orced to reconstruct dif f use scattering  on a very
f ine grid, and use a huge array f or ∆PDF ref inement. However, sometimes the values of  the
correlations with long correlation vectors are not interesting. In such case there is a trick one can use
to reduce the amount of  memory Yell requires f or ref inement.

Experimental data is prepared in a special way. From the reconstruction on the f ine grid one calculates
the ∆PDF. Then cuts a central part of  the ∆PDF, containing the region of  interest. And f inally back-
transf orms the part of  the ∆PDF back to reciprocal space.



This procedure introduces strong truncation ripples in reciprocal space, but preserves the ∆PDF. The
∆PDF can then be ref ined in Yell with the FFT method. The obtained correlations will be accurate,
though the dif f use scattering  will be modeled poorly.

In such case interatomic pairs which lie close to the edge of  calculated ∆PDF region. The part of  the
∆PDF signal f rom such pairs will lie inside the calculated region, and part of  the signal will lie outside
the calculated region. The direct calculation method and the approximate algorithm with def ault
settings will wrap the ∆PDF signals which lie outside the calculated region into the calculated area.
Turning periodic boundaries of f  along these dimensions avoids this problem.

Thus, whenever the above mentioned method of  preparing dif f use scattering  is used, the periodic
boundaries should always be turned of f  along the dimensions along which the ∆PDF map was cut.

ReportPairsOutsideCalculatedPDF

possible values: true , false  
def ault: false

Reports all the pairs which lie outside calculated ∆PDF map.

If  an interatomic pair f all outside the calculated ∆PDF map, its signal will be periodically wrapped inside
the ∆PDF map. For dif f use scattering  comprising  layers and streaks this is a valid behavior. However, if
the dif f use scattering  is not broad along some dimension, but certain pairs f all outside the calculated
∆PDF map along that dimension, this is an indication that dif f use scattering  should be reconstructed
on f iner grid.

During the ref inement with a specially prepared dataset, with some PeriodicBoundaries  turned
of f , the signal f rom most of  the interatomic pairs which lie outside the calculated region will be
silently discarded. Turning on this option allows to f ind unexpected behavior caused by this f eature.

Parameters controlling the least square refinement

Refine

Possible values: true , false  
Def ault: true

Specif ies whether the program should ref ine dif f use scattering. If  set to false , the program will just
calculate dif f use scattering  f rom a g iven model.

MaxNumberOfIterations



possible values: integer 
def ault: 1000

Def ines the maximum number of  iterations the ref inement algorithm is allowed to run.

MinimizerTau

def ault: 1E-03

Def ines the initial Levenberg-Marquandt damping parameter. Note that this value works dif f erently,
than the damping  in standard crystallographic packages. For more inf ormation see this wikipedia
article and also somewhat minimalistic manual of  the levmar library.

MinimizerThresholds

possible values: three numbers 
def ault: 1E-17 1E-17 1E-17

Def ines the thresholds to detect convergence of  least squares procedure. The thresholds are f or the
size of  the gradient, minimization step size, the third criterion works if  the experimental and dif f use
scattering  are the same (say, f or synthetic data). For more inf o see \epsilon1  \epsilon2  and
\epsilon3  in levmar documentation.

MinimizerDiff

possible values: one number 
def ault: 1E-06

Yell calculates derivatives by f inite dif f erence method. This value provides the increment that is used
f or the calculation of  derivatives.

Unit cell

This section of  the input f ile def ines the contents of  the crystal’s average unit cell.

In Yell, the average structure is def ined in a hierarchical manner: the unit cell consists of  topological
sites, which are occupied by atoms or groups of  atoms. The topological sites are called
Variants and can be disordered (occupied with a certain probability by more than one group of

atoms). Groups of  atoms represent ensembles, like molecules or clusters.

Example:



UnitCell[
  GdFeVoid_site=Variant [
    (p=1/3)
    Gd  1   0 0 0        0.035 0.035 0.035 0 0 0

    (p=1/3)
    iron_molecule = [
      Fe 1 0 0  0.2845   0.035 0.035 0.035 0 0 0
      Fe 1 0 0 -0.2845   0.035 0.035 0.035 0 0 0
    ]

    (p=1/3)
    Void 
  ]
]

In this example GdFeVoid_site  is either occupied by a gadolinium atom, by a structural building
block of  two iron atoms, which is aliased as iron_molecule , or by a Void . On average, each
chemical unit is present with the same probability of  p=1/3 .

Groups of atoms

Atoms can be grouped into one entity. This entities represent atoms which can not appear without
each other, usually molecules or clusters.

The groups are def ined without keyword, just with square brackets [  ] .

Example:

Fe2_molecule = [
  Fe 1   0 0  0.2845   0 0 0 0 0 0
  Fe 1   0 0 -0.2845   0 0 0 0 0 0
]

The grouping is recurrent, each group may contain not only atoms, but also other groups.

Example:

Fe2_molecule = [

  Fe 1   0 0  0.2845   0 0 0 0 0 0

  lower_iron = [ 
    Fe 1   0 0 -0.2845   0 0 0 0 0 0
  ]
]



Atoms

Atoms can be def ined in two f ormats with both isotropic and anisotropic ADP:

AtomType  mult  x y z  Uiso
AtomType  mult  x y z  U11 U22 U33 U12 U13 U23

x  y  and z  are f ractional coordinates, Uiso  and Uij  are atomic displacement parameters in Å .
The multiplier mult  can be thought of  as a site multiplicity in the average structure. The occupancy
of  each atoms is def ined as mult*p  where p  is the probability of  the atomic group the atom
belongs to (def ined in the construction (p=...) ) and mult  is the multiplier. In the vast majority of
the cases mult  should be equal to 1. It is only dif f erent if  the atomic group contains disorder which is
not disentangled into dif f erent entries of  Variant .

Example:

Fe   1   0 0 -0.2845   0 0 0 0 0 0

Naming the entities of the unit cell

Variants, atomic groups and atoms can be g iven names f or symmetry expansion and use in
Correlations  and Modes . Example:

Variant1 = Variant[
    (p=1)
    Iron_molecule = [
        Fe1 = Fe 1   0 0  0.2845   adp_perp adp_perp adp_z 0 0 0
        Fe2 = Fe 1   0 0 -0.2845   adp_perp adp_perp adp_z 0 0 0
    ]
]

Symmetry

It is possible to apply symmetry elements to atoms and groups of  atoms. The syntax is the f ollowing:

 atomic_group*Symmetry(x,y,z)

Example f or mirroring an atom with respect to the xy0 plane:

2



 Fe_atom = Fe 1   0 0  0.2845   0.01

 symmetry_equivalent_Fe = Fe_atom*Symmetry(x,y,-z)

Unlike in the average crystal structure, the symmetry elements are sensitive to integer translations. In
cases when the center of  the molecule is not in (0,0,0)  user should provide the appropriate
translations. Here is example f or the same iron molecule, with centered at (0,0,1)

Fe_atom = Fe 1   0 0  0.7155   adp_perp adp_perp adp_z 0 0 0

symmetry_equivalent_Fe = Fe_atom*Symmetry(x,y,2-z)    #note 2-z here
# resulting coordinates are 0 0 1.2845

Modes

Modes is a way to def ine motions of  atoms and molecules in Yell. All the motions are linear meaning
that a displacement of  each atom  is expressed as a linear combination of  translation along all the
modes:

where  is a set of  vectors attached to each atom in a molecule,  is the amplitude of  a
displacement of  the molecule along mode .

Currently Yell supports two types of  modes: translations and linear approximation of  rotations.

TranslationalMode

Def ines movements of  atomic groups as a whole; expressed in Å.

Format: TranslationalMode(atomic_group,axis)  
or TranslationalMode(atom,axis)  
where atomic_group  is a name to a group of  atoms, and axis  could be either x , y  or z .

Example:

manganese_x = TranslationalMode(manganese,x)

Δr

Δ =ri ∑
n
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RotationalMode

Def ines linear approximation to rotation of  a group of  atoms along arbitrary axis; expressed in
radians.

Format: RotationalMode(atoimc_group, axis_x, axis_y, axis_z,
center_x,center_y,center_z)  
where axis_x  axis_y  and axis_z  def ine the rotation axis direction and center_x  center_y
center_z  def ine a point on the rotation axis.

A displacement vector f or each atom is def ined as

Correlations

In this section, short-range order pairwise correlations are def ined. There are three basic types of
correlations: substitutional correlations, displacement correlations and size ef f ect (see Weber &
Simonov, 2012). The combination of  these correlations may describe any disorder in a disordered
crystal.

In Yell, correlations which belong to the same group of  atoms should be combined together in groups
using square brackets. Example:

Correlations [
  [(1,0,0)
   Multiplicity 2
   SubstitutionalCorrelation(CuVoid,AuVoid,0.25+dp)
   SizeEffect(Cu,Au_x,dx)
   ADPCorrelation(Cu_x,Au_x,dUx)
   ]
 ]

Each group starts with a vector (u,v,w) , def ining the lattice vector between the correlated atoms
or molecules. It corresponds to the  in (Weber & Simonov, 2012). The elements of  the vector
are not required to be integer, and could f or example be multiples of  0.5 (in case of  C centering) and
even irrational (e.g . in case of  quasicrystals). The corresponding inter-atomic vector is calculated as 

 , where  and  are the atomic coordinates of  the copper and gold atoms
def ined within CuVoid  and AuVoid  variants (not shown in the example).

Multiplicity

× .raxis
−ratom rcenter

| − |ratom rcenter

Ru,v,w

+ −Ru,v,w rAu rCu rCu rAu



Format: Multiplicity m  
where m  is number.

Def ines the multiplicity of  the interatomic or intermolecular pair with respect to the Laue group.

Ef f ect: multiplies m  with the multiplicity of  each atomic pair in current correlation group. Does not
have a letter dedicated to it in (Weber & Simonov, 2012), but is equivalent in ef f ect by multiplication m
to both joint probability  and Patterson multiplicity .

In Yell, the Laue group is applied to the dif f use scattering  automatically. However, Yell currently
cannot automatically calculate the multiplicity of  each correlation set. It is expected that the user
manually provides the multiplicity f or it.

The multiplicity m  of  a group should be equal to the number of  times such correlation group appears
in the ∆PDF space. The correlations in the center of  ∆PDF space usually get multiplicity 1, the
correlations on general positions get multiplicity that is equal to the order of  the crystal Laue group.

For an example see the model f or FeVoid.

Warning: The def inition of  the multiplicity has to be done with great care. Wrongly def ined
multiplicities may be perf ectly compensated by over- or underestimated structure correlation
parameters leading to errors that are dif f icult to recognize!

For detailed instructions on how to apply multiplicity see this section.

Substitutional correlation

Substitutional correlation means that the occupancies of  two Variants  in the structure depend on
each other.

Ef f ect: sets the joint probabilities of  atomic pairs to the ones specif ied as arguments. Af f ects  as
stated in (Weber & Simonov, 2012).

Format: SubstitutionalCorrelation(variant_A,variant_B,p11,p12,...,pnm)  
short f ormat:
SubstitutionalCorrelation(variant_A,variant_B,p11,p12,...,pn_minus_1m_minus_1)

where pij  are the joint probability coef f icients to f ind both blocks Ai and Bj present at the same
time, the pn_minus_1m_minus_1  is the joint probability .

Example:

SubstitutionalCorrelation(CuAu,CuAu,0.25+x)

Extended example

pmn
uvw cncm

pmn
uvw

pn−1,m−1



For the unit cell:

UnitCell [
  AuCu = Variant[
    (p=1/3)
    Au 1  0 0 0  0
    (p=2/3)
    Cu 1  0 0 0  0
]]
Correlations [
  [(0,0,0)
  SubstitutionalCorrelation(AuCu,AuCu,1/3) #corresponds to the matrix 1/3 0
                                           #                          0 2/3
  ]
]

This will produce the f ollowing pairs (dif f erences are typed in red):

      m p        x y z  Uxx ... Uyz  p̅        x̅ y̅ z ̅  U̅xx ... U̅yz
Au Au 1 0.333333 0 0 0  0 0 0 0 0 0  0.111111 0 0 0  0 0 0 0 0 0
Cu Au 1 0        0 0 0  0 0 0 0 0 0  0.222222 0 0 0  0 0 0 0 0 0
Au Cu 1 0        0 0 0  0 0 0 0 0 0  0.222222 0 0 0  0 0 0 0 0 0
Cu Cu 1 0.666666 0 0 0  0 0 0 0 0 0  0.444444 0 0 0  0 0 0 0 0 0

Here the m  marks pair multiplicicty, p  is joint probability, x  y  z  are interatomic vector
coordinates, Uxx ... Uyz  are the components of  the joint ADP tensors, the letters with overbar p̅
x̅ y̅ z ̅ U̅xx ... U̅yz  relate to the average probability, interatomic vector and ADP tensor.

Formal description

Assume that

variant_A = Variant [
  (p=pA1)
  A1
  (p=pA2)
  A2
  ...
  (p=pAn)
  An
]
variant_B = Variant [
  (p=pB1)
  B1
  (p=pB2)
  B2
  ...



  (p=pBm)
  Bm
]

Where Ai  and Bj  are some chemical units, or void. Then, the f ull matrix of  joint probabilities has
size  and the f orm

This will be expressed in yell in the f ollowing way:

SubstitutionalCorrelation(variant_A,variant_B,pA1B1,pA2B1,...,pAnB1,
                                              pA1B2,pA2B2,...,pAnB2,
                                              ...
                                              pA1Bm,pA2Bm,...,pAnBm)

Since possibilities Ai  are all exclusive and  there are  independent constraints
on  which constrain the sum of  pair probabilities to probabilities of  single chemical units:

The constraints make it possible to calculate the last row and last column of  the matrix , resulting  in

where

Yell can automatically calculate the last row and the last column, g iven the upper lef t 
 independent part of  joint probability matrix. Thus the above def inition can be

equally well expressed in the short f orm:
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SubstitutionalCorrelation(variant_A,variant_B,pA1B1,pA2B1,...,pAn-1B1,
                                              pA1B2,pA2B2,...,pAn-1B2,
                                              ...
                                              pA1Bm-1,pA2Bm-1,...,pAnBm-1)

The short f orm is in general pref erred, because it is a non-redundant representation of  the structure
model.

Neutral joint probabilities

If  the occupancies of  two variants are independent, e.g . because their interatomic distance is larger
than the correlation length of  the corresponding local order phenomenon, the joint probabilities are
equal to the product of  the occupancies . Thus the f ollowing probability matrix

will produce no dif f use scattering  and no signals in PDF space (and can be ommited):

Zero - neighbor joint probabilities

For the zero neighbor correlation, i.e. the correlation of  a Variant with itself , the diagonal elements
of  the joint probability matrix should be equal to the average occupancy of  the corresponding
elements, and of f -diagonal elements should be equal to zero:

Or in the Yell (long) f orm:

[(0,0,0)
 SubstitutionalCorrelation(variant_A,variant_A,pA1,0,...,0,
                                               0,pA2,...,0,
                                               ...
                                               0,0,...,pAn)]

It is important to note that the zero-neighbor correlation must  be def ined f or all Variants showing
occupational disorder and that the joint probabilities should not be ref ined but be the same as the
occupation probability (p=…) def ined in the UnitCell statement.

In practice the zero neighbor correlation is f requently over- or underestimated, because incomplete
background subtraction or elimination of  broad dif f use scattering  with the background (=
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overcorrection of  background) may inf luence the zero neighbor correlation def inition and thus the
correct determination of  the scale f actor. As shown in (Weber & Simonov, 2012), such errors may lead
to signif icant systematic deviations in the determination of  other pair correlation parameters.
Caref ul background determination is theref ore indispensable f or a high quality local structure
ref inement.

ADPCorrelation

This correlation appears when displacements of  two atoms or molecules are not independent.

Ef f ect: changes  as stated in (Weber & Simonov, 2012)

Format: ADPCorrelation(Mode1,Mode2,cov)  
where cov  is a covariance of  the displacements along the two modes ; cov  is
expressed in  where  are the units of  the two modes (e.g . Å f or translational
modes and rad f or rotational ones).

The correlations of  atomic displacements typically manif est themselves as thermal dif f use scattering
(TDS), but the correlations could also be of  static orig in.

Yell assumes that displacements of  all atoms in the crystal are jointly Gaussian and the distribution of
the displacement dif f erencess  is also Gaussian. The correlations of  the displacements
are expressed in terms of  covariances of  collective displacement of  the blocks along Modes .
Analogously to independent substitutional correlations ADPCorrelations do not need to be def ined, if
Modes  are not correlated with any other mode. In f act, most of  the internal modes of  rig id

molecules are not expected to be correlated.

Note that some ADP correlations, though symmetrically independent, can produce the same signal in
PDF space. One very practical example is the covariances  and  produce exactly
the same ef f ect in PDF space, and should theref ore be constrained.

The ADP correlations are subject of  symmetry constraints by the symmetry of  interatomic or
intermolecular pairs. The constraints to the correlations of  translational modes are equivalent to the
site-symmetry ADP constraints in the average structure. The constraints involving rotational modes
are equivalent to the TLS constraints (Schomaker & Trueblood 1968).

Example

#Cu structure (fcc)
#the unit cell has Fm-3m symmetry (225)
LaueSymmetry m-3m
UnitCell [

βmn
uvw

cov =< >ξ1ξ2
∗units1 units2 unitsi
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  Variant [
    (p=1)
    Cu = Cu 1  0 0 0  0.01
]]
Modes [
  Cu_x = TranslationalMode(Cu,x)
]
Correlations[
...
[(1,0,0)
 ADPCorrelation(Cu_x,Cu_x,0.001)
 ADPCorrelation(Cu_y,Cu_y,0.0001)
 ADPCorrelation(Cu_z,Cu_z,0.0001)]
...
]

Note that the yy and zz correlations are the same, while xx is dif f erent according to symmetry of  the
pair. Let us assume that the symmetry of  this pair is described by the point group  with the
4 -f old axis along a of  the cubic crystal. This restricts the covarince matrix to the f ollowing f orm:

Example with correlation matrices

The covariance matrices can be recalculated in correlation matrices.

where indices  mark tensor components,  and  count atoms,  is a correlation
matrix,  is a covariance matirx (in Å ), the  and  are the average ADP tensors of
atoms  and  (in Å ).

In Yell correlation matrix can be calculated in the epilogue using the Print  command. The above
mentioned example becomes:

#Cu structure (fcc)
#the unit cell has Fm-3m symmetry (225)
LaueSymmetry m-3m
UnitCell [
Uiso=0.01; #define a variable for Uiso
  Variant [
    (p=1)
    Cu = Cu 1  0 0 0  U
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]]
Modes [
  Cu_x = TranslationalMode(Cu,x)
]
Correlations[
...
cov_11=0.001;
cov_22=0.002;
[(1,0,0)
 ADPCorrelation(Cu_x,Cu_x,cov_11)
 ADPCorrelation(Cu_y,Cu_y,cov_22)
 ADPCorrelation(Cu_z,Cu_z,cov_22)]
...
]
Print "corr_11=" cov_11/Uiso " corr_22=" cov_22/Uiso " corr_33=" 
cov_22/Uiso

Will print:

Requested output: corr_11=0.1 corr_22=0.01 corr_3=0.01

Formal definition

The theory is somewhat similar to the normal mode analysis. The notation here is analogous to
(Cyvin 1968).

1. Denote the equilibrium conf iguration of  N atoms in a molecule  as

f or i=1,2,…,N. Then the displacements are introduced as deviations f rom equilibrium:

2. Introduce another set of  coordinates  which we identif y as a set of  internal coordinates and
introduce a set of  matrices  that transf orm internal coordinates into “external” atomic
displacements:

If   has 3N independent coordinates and there exist an inverse transf ormation

both representations are equivalent.

α
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In Yell, the matrices  are called Modes, the variables  are ref erred to as the amplitudes of
displacement along corresponding modes.

3. Recall, that the elements of  the ADP matrix of  an individual atom  in the molecule  is def ined as
f ollows:

The paper (Weber & Simonov, 2012) uses the notation ; it is equivalent notation since 
, where  and  are the lengths of  the corresponding reciprocal lattice vectors.

4. A covariance between the displacements of  two atoms belonging to two dif f erent molecules can
be expressed in terms of  covariances of  the modes:

5. The joint atomic displacement parameter matrix of  one atom as seen f rom another atom can be
expressed as f ollows:

Note that in order to def ine the ADP correlations it is not necessary to construct the f ull set of
internal modes. It is signif icant to know the ADPs of  each pf  the atoms f rom the average structure
and only the covariances of  the modes which are correlated.

Neutral correlation

If  the displacements of  two molecules are independent, all the covariances are equal to zero and
don’t need to be listed explicitly.

Zero-neighbor correlation

In theory, the covariance in the zero neighbor is equal to the square of  the amplitude of  the mode. For
example, f or single atom, the ADP correlations of  the zero neighbor should be identical with its ADP
parameter:

adp_cu=0.01;

UnitCell [
  Variant [
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    (p=1)
    Cu = Cu 1  0 0 0  adp_cu
]]
Modes [
  Cu_x = TranslationalMode(Cu,x)
  Cu_y = TranslationalMode(Cu,y)
  Cu_z = TranslationalMode(Cu,z)
]
Correlations [
  [(0,0,0)
   ADPCorrelation(Cu_x,Cu_x,adp_cu)
   ADPCorrelation(Cu_y,Cu_y,adp_cu)
   ADPCorrelation(Cu_z,Cu_z,adp_cu)]
]

Similar to substitutional correlations zero neighbor ADP correlations may be heavily af f ected by over-
or under-corrected experimental background.

Note that in substitutionally disordered crystals ADP correlations are f requently not seen because
corresponding dif f use scattering  is usually very weak. In such crystals zero-neighbor ADP correlation
need only be def ined if  there is a clear indication to ADP correlations or size-ef f ect correlations.

SizeEffect

Size ef f ect occurs when a substitutional disorder in a Variant  is correlated with a static
displacement of  another chemical unit.

Ef f ect: changes the  as stated in (Weber & Simonov, 2012) 
Format: SizeEffect(AtomicGroup1,Mode2,amp)  
or SizeEffect(Mode1,AtomicGroup2,amp)

The meaning of  the SizeEffect(AtomicGroup1,Mode2,amp) : in the presence of
AtomicGroup1  the AtomicGroup2  has an average displacement along the Mode2  by the amount

def ined by the amplitude amp  (expressed in the units of  the Mode2  e.g . Å f or translational mode, rad
f or rotational)

Example

UnitCell [
  Variant [
    (p=0.99)
    Na = Na  1  0 0 0  0.01

umn
uvw



    (p=0.01)
    Void
]]
Modes [
  Na_x = TranslationalMode(Na,x)
]
Correlations [
  ...
  [(1,0,0)
   SizeEffect(Na,Na_x,0.02)
  ]
  ...
]

Neutral SizeEffect

When the correlation is absent, the size ef f ect is equal to zero and is not required to be def ined.

Zero-neighbor correlation

The size-ef f ect f or the zero-neighbor is equal to zero. However, it is important to add the zero
neighbor f rom the ADPCorrelation, otherwise the model might produce negative intensities.

Example:

#A disordered Fe-Ni alloy
#Space group Fm-3m
PointGroup m-3m
UnitCell
[
ADP=0.0004;
  FeNi = Variant[
    (p=1/2)
    Fe = Fe 1  0 0 0  ADP

    (p=1/2)
    Ni = Ni 1  0 0 0  ADP
  ]
]

Modes[
  Fe_x = TranslationalMode(Fe,x)
  Ni_x = TranslationalMode(Ni,x)



  #... same for y and z
]
Correlations [
  [(0,0,0)
   SubstitutionalCorrelation(FeNi,FeNi,1/2)
   #IMPORTANT: even though the crystal does not have ADP correlation,
   #zero neighbor ADP correlation should be input in presense of size 
effect:
   ADPCorrelation(Fe_x,Fe_x,ADP) 
   ADPCorrelation(Ni_x,Ni_x,ADP)
   #... same for y and z
  ]
#...
#
  [(1,0,0)
   SubstitutionalCorrelation(FeNi,FeNi,0.25*(1+a200))

   SizeEffect(Fe,Fe_x,se200_FeFe)
   #IMPORTANT: in addition to size effect add ADP correlation 
   #with amplitude se^2/2
   ADPCorrelation(Fe_x,Fe_x,pow(se200_FeFe,2)/2) 

   SizeEffect(Fe,Ni_x,se200_FeNi)  
   ADPCorrelation(Fe_x,Ni_x,pow(se200_FeNi,2)/2)

   SizeEffect(Ni,Fe_x,se200_FeNi)
   ADPCorrelation(Ni_x,Fe_x,pow(se200_FeNi,2)/2)
   SizeEffect(Ni,Ni_x,se200_NiNi)
   ADPCorrelation(Ni_x,Ni_x,pow(se200_NiNi,2)/2)
  ]

Formal definition

In the presence of  size-ef f ect:

For description of  the notation see ADPCorrelation

Epilogue

In the last part of  the f ile the custom output f rom Yell can be requested. The output will be produced
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af ter the ref inement is f inished. The output can contain any expressions whose values will be
calculated f rom the ref ined variables.

Print

optional. 
Arguments: a list of  strings in quotes "  "  or arithmetic expressions 
Format: Print "string1" expr1 ...

Prints the requested output in the terminal.

Example:

a=1;b=2;
Print "The variable a=" a ", b=" b 

This line produces the output Requested output:The variable a=1, b=2

How to calculate multiplicity

Yell can apply the Laue symmetry to the calculated ∆PDF. This is a convenient f eature since only the
independent cone of  correlations in ∆PDF space have to be def ined.

Yell does not distinguish the interatomic pairs on special and average positions. Thus, the multiplicity
of  each interatomic (intermolecular) pair must be provided manually. If  multiplicity is not provided,
all the pairs except in the center of  ∆PDF will get too little density:



If  the multiplicity is provided, the Laue symmetry is applied properly:

Definition

By multiplicity of  an interatomic (intermolecular) pair we mean the number of  interatomic
(intermolecular) pairs which are symmetry related to the current pair.

By symmetry we mean two distinct symmetries: the crystal space group symmetry and combinatorial
symmetry which relates pair (A,B) to (B,A).

First way to determine multiplicity

Multiplicity can be determined by counting the symmetry equivalent pairs.

Example

This example is perf ormed in two dimensions, but generalization to three dimensions is
straightf orward.

Assume a simple two-dimensional square crystal with a space group  and one atom in the unit
cell:

p4mm



The zeroth neighbor connects an atom with itself . There is 1 such pair:

The f irst neighbor with interatomic vector (1,0) has 4  symmetry equivalents:

The neighbor (1,1) also has 4  symmetry equivalents:



also the neighbor (2,0):

The neighbor (2,1) has 8 equivalents:

The neighbor (2,2) has again 4  equivalents:



The list of  all pairs (without actual correlations) in Yell f ormat will be the f ollowing:

Correlations [
  [(0,0,0)
   Multiplicity 1
   ...]

   [(1,0,0)
   Multiplicity 4
   ...]

   [(1,1,0)
   Multiplicity 4
   ...]

   [(2,0,0)
   Multiplicity 4
   ...]

   [(2,1,0)
   Multiplicity 8
   ...]

   [(2,2,0)
   Multiplicity 4
   ...]
 ]

Second way to determine multiplicity



Sometimes it is complicated to count the number of  symmetry related pairs or there is a demand to
calculate the multiplicity by an alternative approach to verf y the results. In such cases, the multiplicity
can be calculated f rom the internal symmetry of  a single pair.

Assume:

 is a pair
 is the number of  symmetry elements in the crystal space group (space group order)

 is the number of  symmetry elements in the internal symmetry of  a pair (internal
symmetry order)

Then, number of  symmetry equivalent pairs is equal to:

 if  the pair connects dif f erent atoms( molecules) and 

 f or zeroth neighbor.

The above mentioned f ormula is a consequence of  the orbit-stabilizer theorem. The f actor 2 appears
in the f ormula due to compinatorial symmetry.

Example

Again, assume a simple square crystal. The crystal has a plane group  (No. 11 in International
Tables of  Crystallography):

The plane group  has f ollowing symmetry operations:

p

|G|
|Int(p)|

= 2Np
|G|

|Int(p)|

=Np
|G|

|Int(p)|

p4mm

p4mm

(1) x,y
(5) ,yx̄

(2) ,x̄ ȳ

(6) x, ȳ
(3) ,xȳ

(7) y,x
(4) y, x̄
(8) ,ȳ x̄

|G| = 8



Totally there are 8 operations, thus .

The zeroth neighbor has internal symmetry :

The order of  internal symmetry group  is 8 (group elements: 1, , , , , , , );
this pair is a zeroth neighbor:

Hence there is 1 such pair.

The neighbor (1,0) has internal symmetry :

On the image the glide planes which are marked orange belong to the space group of  the crystal, but

|G| = 8

4mm

4mm 41 42 43 mx my mxy myx

= = = 1N(0,0)
|G|

|Int( )|p(0,0)

8
8

2mm



not to the internal symmetry of  the pair.

The order of   is 4  (group elements: 1, 2, , ), thus the number of  such pairs is:

Note that g lide plane operations do no count in this case, because the internal symmetry of  the pair
has to be described exclusively by point symmetry operations. In the case of  periodic layers or rods,
which are disordered along the other dimensions (corresponding to dif f use streaks or layers,
respectively), g lide or screw operations might also be considered along the periodic directions (see
corresponding layer or rod groups).

The neighbor (1,1) also has internal symmetry 

The average crystal has two additional planes and a f our f old axis (marked orange) passing through
coordinates (0.5,0.5), which do not completely belong to the internal symmetry of  the pair. They are
not counted. The remaining group elements are : 1, , , 

The number of  (1,1) pairs is theref ore:

Neighbor (2,0) again has the symmetry 

2mm mx my

= 2 = 2 = 4N(1,0)
|G|

|Int( )|p(1,0)

8
4

2mm

≡ 242 mxy myx

= 2 = 2 = 4N(1,1)
|G|

|Int( )|p(1,1)

8
4

2mm



and 

Neighbor (2,1) has the symmetry  (group elements: 1, 2):

Thus the number of  such pairs is 

Neighbor (2,2) has symmetry  (group elements: 1, 2, , ):

= 2 ∗ 8/4 = 4N(2,0)

2

= 2 ∗ 8/2 = 8N(2,0)

2mm mxy myx



And thus there are 4  such pairs.

From symmetry analysis it is clearly seen:

The zeroth neighbor has symmetry  and only 1 equivalent.
Neighbors  and  have symmetry  and thus 4  equivalents.
All the other neighbors  have symmetry  and thus 8 equivalents.

Combinatorial symmetry

By combinatorial equivalent of  an (ordered) pair (A,B) we mean the pair (B,A). In PDF, combinatorial
pairs are obtained by inverting  interatomic vectors.

Assume we have a planar NaCl-type structure:

4mm

(x, 0) (x,x) 2mm

(x,y) 2



The pair Na-Cl with interatomic vector (0.5,0.5) has a combinatorially equivalent pair Cl-Na with vector
(-0.5,-0.5). Thus the multiplicity of  such pair is 8:

When the multiplicity is calculated using the second method, combinatorially symmetric pairs are
automatically counted. The pair Na-Cl (0.5,0.5) has the internal symmetry :m



The multiplicity is equal to 

Independent cones for all Laue groups

The f ollowing table summarizes the independent parts of  each Laue group:

= 2 ∗ 8/2 = 8NNaCl



Equation for diffuse scattering
calculation

Dif f use scattering  of  a disordered crystal can be calculated by the equation (8) f rom (Weber &
Simonov 2012:

Here indices  and  go over all the atoms in a unit cell,  over all latice vectors;  is a joint
probability to f ind atom  in a unit cell and atom  in another unit cell separated by ,  is a
joint ADP matrix expressed in f ractional units,  is the average interatomic vector
between atoms  and ,  is a size ef f ect parameter,  and  are the average occupancies,
and  and  are the average ADP parameters,  and  are the atomic f orm-f actors.

References

Laue group
m m3̄

m3̄
6/mmm

6/m

m : H3̄

m : R3̄
: H3̄

: R3̄
4/mmm

4/m
mmm

2/m
2/m : b

1̄

Group order
48

24
24
12

12

12
6

6
16
8
8
4
4

2

Independent cone conditions
x ≥ y ≥ z ≥ 0

x ≥ z, y ≥ z, z ≥ 0
x ≥ 2y ≥ 0, z ≥ 0
x ≥ y ≥ 0, z ≥ 0

x ≥ y ≥ 0, z ≥ 0

z ≥ y ≥ x, x + y+ z ≥ 0
x ≥ 0, y ≥ 0, z ≥ 0

x ≥ y, x ≥ z, x + y+ z ≥ 0
z ≥ 0, x ≥ y ≥ 0

x ≥ 0, y ≥ 0, z ≥ 0
x ≥ 0, y ≥ 0, z ≥ 0

z ≥ 0, y ≥ 0
z ≥ 0, y ≥ 0

z ≥ 0

(h) = { exp(− h) cos[2πh( + + ] −Idif ∑
Ruvw

cryst

∑
mn

cell

puvw
mn hTβmn

uvw Ruvw rmn ūmn
uvw

− exp(− ( + )h) cos[2πh( + )]} ⋅cmcn hT βaver
m βaver

n Ruvw rmn

⋅ (h) (h)fm fn

m n Ruvw puvw
mn

n m Ruvw βmn
uvw

= −rmn rn rm

m n ūmn
uvw cm cn

βaver
m βaver

n (h)fm (h)fn
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