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Summary 

Structural disorder is naturally present in many crystals. To date, there is still need for applicable 

and straightforward single-crystal methods to analyse the local structure of disordered crystals. 

The new methods three-dimensional (3D) Pair Distribution Function (PDF) analysis and, in 

particular, three-dimensional PDF (3D- PDF) analysis are introduced. Based on 3D interatomic 

vectors, the presented approach is straightforward and illustrative, because 3D-PDFs can be 

directly linked with the real crystal structure. The 3D- PDF allows the investigation of short- and 

medium-range disorder phenomena. It is a finite function, which is restricted by a maximum 

correlation length, thus there is no need for concepts in order to emulate infinite crystal structures. 

Selective interpretation and modelling of only parts of the local structure is possible. Further, 

multiple independent disordered motifs, which occur uncorrelated to each other at different places 

in a real structure, can be handled simultaneously as well. In contrast to state-of-the-art methods 

used for characterisation and modelling of disorder, which are based on diffuse scattering 

intensities in reciprocal space, the 3D-PDF approach has the advantage that the structural 

information provided by the PDF has the same metrics as the underlying crystal structure. 

Furthermore, structural information carried by specific atomic pairs appears in the 3D-PDF at 

well-defined and confined positions, and can therefore be measured or filtered in a straightforward 

way. In reciprocal space this information is continuously spread throughout the whole diffraction 

pattern. 

The application of 3D- PDF analysis is demonstrated on two studies of disordered materials. 

Illustrated by N,N',N''-tris-t-butyl-1,3,5-benzene tricarboxamide, qualitative 3D-PDF analysis is 

used to elucidate the proximity relationships of chiral molecular columns, which occur in two 

different helical hands. PDF analysis revealed a systematic preference to heterochiral 

arrangements of molecules. The second example is the interpretation of the 3D- PDF of a 

decagonal Al–Cu–Co quasicrystal. A structural model of disorder for the twofold (~8 Å) 

superstructure is presented. The superstructure was found to be built from columnar units, having a 
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maximum diameter of ~14.5 Å. The lateral correlation between these columns is weak. Internally, 

the columns consist of a long-range ordered alternation of flat and puckered layers. The 

differential evolution method was used to optimise this model. The obtained model is solely based 

on geometrical assumptions, without using any constraints on chemical or physical structural 

properties. 

In addition, practical aspects of the PDF method, including data collection, processing and 

filtering, are given. Extensive investigations were made on performance and reliability of 

differential evolution optimisation on PDF densities of the structural model of the Al–Cu–Co 

quasicrystal. 
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Zusammenfassung 

Fehlordung ist ein verbreitetes Phänomen in vielen Kristallstrukturen. Dennoch gestaltet sich die 

Auswertung fehlgeordneter Stukturen schwierig, und es gibt nur wenige ausgereifte Einkristall-

Methoden zur Untersuchung von Fehlordnung, welche zumeist auf der Simulation diffuser 

Röntgenbeugungsintensitäten im reziproken Raum basieren. Die in dieser Arbeit vorgestellten 

Methoden der dreidimensionalen (3D) Paarverteilungsfunktions-Analyse (Pair Distribution 

Function (PDF) analysis), und im speziellen der daraus abgeleiteten 3D- PDF-Analyse, beruhen 

hingegen auf der Auswertung interatomarer Paarkorrelationen. Da die Metrik des Korrelations-

raumes identisch ist mit derjenigen des Realraumes, lassen sich die aus der PDF gewonnenen 

Informationen leicht in die Realstruktur des untersuchten Kristalls übertragen. In der PDF-

Methode werden Paarkorreltionen der periodischen Fernordnung ausgeblendet, so dass die Inter-

pretation der verbliebenen Korrelationen Auskunft über die Fehlordnung im kurzen und mittleren 

interatomaren Distanzbereich gibt. Die 3D- PDF wird in ihrer Ausdehnung durch eine maximale 

Korrelationslänge limitiert, so dass die Untersuchungen auf ein begrenztes Datenvolumen be-

schränkt werden können. 3D- PDF-Analyse bietet überdies die Möglichkeit der selektiven und 

unabhängigen Auswertung und Interpretation von Teilstrukturen der Realstruktur. Ferner ist es 

möglich, zur gleichen Zeit mehrere unkorrelierte Teilbereiche der Realstruktur zu simulieren. 

Strukturinformationen im PDF-Raum sind einfach zu interpretieren, weil sich die Beiträge eines 

einzelnen Atompaares auf wenige, bestimmbare Orte im Korrelationsraum konzentrieren und nicht 

wie im reziproken Raum über das ganze Volumen verteilt sind. 

Die praktische Anwendung der 3D- PDF-Analyse wird an zwei Beispielen fehlgeordneter 

Strukturen besprochen. Anhand des ersten Beispieles, N,N',N''-tris-t-butyl-1,3,5-Benzentricarbox-

amid, werden die Möglichkeiten der qualitativen 3D- PDF-Analyse aufgezeigt. In dieser 

organischen Verbindung treten säulenförmig angeordnete Moleküle unterschiedlicher Händigkeit 

auf, welche in auf Bragg-Streuung abgestützten Strukturlösungen nicht voneinander unterschieden 

werden können. Mittels 3D- PDF-Anlyse konnte bestätigt werden, dass eine heterochirale 

Vorzugsorientierung aneinandergrenzender Molekül-Säulen vorherrscht. 
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Eine zweite Studie befasst sich mit der zweifachen, fehlgeordneten Überstruktur von deka-

gonalem Al–Cu–Co. Das gefundene Fehlordnungsmodell beschreibt den Quasikristall entlang 

seiner periodischen Achse über säulenartige Strukturmotive, welche einen Durchmesser von etwa 

14.5 Å aufweisen. Intern zeigen diese Strukturelemente deutliche Fehlordnung, währenddem sie 

gegenseitig lateral nur schwach korreliert sind. Die Säulen werden als eine Abfolge von flachen 

und von mit internen Vertikalversätzen behafteten Schichten interpretiert. Der Translationsvektor 

entlang der periodischen Achse wird lokal von ~4 Å in der mittleren Struktur auf ~8 Å im fehl-

geordneten Strukturmotiv verdoppelt. Das fehlgeordnete Strukturmotiv wurde mittels des Ver-

fahrens der differentiellen Evolution optimiert. Die Optimierung beruhte dabei ausschliesslich auf 

der 3D- PDF, und es wurden keine chemischen oder physikalischen Modellparameter und Rand-

bedingungen verwendet. 

Über die Diskussion der erwähnten fehlgeordneten Strukturen hinaus werden praktische 

Aspekte zur Anwendung der 3D-PDF-Methode besprochen, wie z.B. die Messung und Auf-

bereitung der experimentellen Röntgenbeugungsdaten, das Filtern von Daten im reziproken und im 

PDF-Raum, sowie die rechnergestützte Umsetzung der benötigten Fourier-Transformationen. Im 

weiteren wird die Genauigkeit und Verlässlichkeit der PDF-Modellierung (auch von partiellen 

Modellen), sowie die Optimierung mit differentieller Evolution ausführlich diskutiert. 
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In early times of modern crystallography, i.e. in the first half of the 20th century, crystallographers 

used to describe their objects of interest as perfect infinite objects, uniformly built up by small unit 

cells, each identical to the other. Since then, plenty of experimental methods to substantiate this 

concept of ideal crystal structures were developed and continuously enhanced. All the same, it was 

realised soon that real crystals are not as perfect as primarily imagined, but that they show in 

reality a variety of deviations from their ideal structure in the form of defects and disorder. Early 

publications dealing with disordered crystal structures and the related diffuse scattering 

phenomena are, for instance, von Laue (1918), von Laue (1941, pp. 175ff.), Hendricks & Teller 

(1942), Lonsdale (1948), Guinier & Griffoul (1948), just to mention a few prominent examples. 

This general interest in disordered crystal structures notwithstanding, investigations remained 

limited for a long period, because experimental equipment to measure weak diffuse scattering 

intensities within an acceptable time frame was not available, theoretical concepts were 

inadequate, and the huge data volume for an in-depth analysis of disordered systems could not be 

processed with the resources of that time. 

Only with recent advances in experimental equipment, such as fast and sensitive area detectors, 

it has nowadays become possible to scan reciprocal space area-wide and fast, and in this way to 

detect even weakest diffuse scattering intensities. Modern, fast, and powerful computers facilitate 

data processing and evaluation. As a result, disorder is reported from many crystals, sometimes 

prominent, sometimes scarcely observable. 

Even if its name is contradictory, structural disorder is far away from being a cumbersome 

structural feature, disturbing the perfect infinite order of crystals. Disorder is an intrinsic part of 

crystalline structures, and detailed knowledge about local structural units of the real structures is 

an important key to the understanding of energetic and entropic stabilisation and atomic 

interactions within a crystal structure. For a detailed introduction into structural disorder refer e.g. 

to Welberry & Butler (1995), Frey (2003), Welberry (2009). Structural disorder is always 

associated with the occurrence of diffuse scattering (see section 2.1.3). Different kinds of disorder 

are known: displacive, substitutional or orientational disorder, domain-like ordering or disorder in 

composite structures, just to mention a few. Disorder that is time-invariant is grouped under the 

term static disorder. In contrast, thermal vibrations and rotations, or movements of ordered micro-

domains within a crystal structure are time-dependent, dynamic (or thermal) disorder (for an 

overview see e.g. Welberry, 2009; Egami & Billinge, 2003, pp. 249ff). The focus in this work will 

be on a static interpretation of disorder, although disorder analysed by the discussed PDF methods 

can also have a dynamic origin. 

By the discovery of more and more complex crystalline structures, having, e.g., unit cells 

comprising up to several thousands of atoms, or aperiodic crystal structures, the concept of simple 
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ordered unit cell based crystal structures became insufficient for a complete structural 

understanding and description. In many crystal structures, the free energy is reduced by local 

deviations from the idealised structure, which are not periodic on a long-range scale. Thus, 

disorder plays an important role in stabilisation of crystal structures. Furthermore, many properties 

of materials, such as optical properties, hardness, conductivity and superconductivity, or magnetic 

properties, are governed by disorder. For these reasons, enhanced methods for investigation of 

disorder became more and more important. Astonishingly, there are only a few methods for 

analysis and modelling of structural disorder (see sections 2.1.5 and 2.3). In this thesis, theoretical 

concepts and the practical application of three-dimensional (3D) Pair Distribution Function 

analysis, and particularly its variant, three-dimensional PDF (3D- PDF) analysis, are presented 

for investigation, characterisation, and modelling of disorder in single crystals. 
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2.1. Structural Disorder 

2.1.1. Real structures and average structures 

Important terms used in the framework of PDF analysis are average structure, real structure and 

difference structure. In case of X-ray scattering based investigations, these structures are 

represented by the respective electron density distributions. 

The average structure of a crystal is formed by periodic translation of a unique unit cell along 

all crystallographic axes. Its electron density distribution can be expresses as the convolution of 

the electron density distribution of a unique average unit cell,  cell (r), with a Dirac comb (the 

convolution operator is denoted by the symbol ): 

 (r) =  cell (r) (r Rn )
n

. (2.1) 

Here, Rn runs over all translation vectors of the average translation lattice. In a completely ordered 

crystal structure, there is only one unit cell configuration, and the average structure is equal to the 

real crystal structure. In disordered crystal structures, on the other hand, 

 cell (r) =
1

N cell,n(r) , (2.2) 

in which cell,n(r) is the real structure unit cell at translation lattice position Rn, and N is the total 

number of real structure unit cells. For an ideal infinite crystal with any degree of freedom in 

disorder N tends towards infinity. In  cell (r) , partially occupied atom sites and unphysical 

interatomic distances may be observed, whereas in cell,n(r) only fully occupied atoms at 

chemically reasonable distances are possible. 

The real structure is built from these real structure unit cells: 

real (r) = celln
(r) (r Rn )( )

n

. (2.3) 

A difference structure between the real structure and the average structure can be calculated by 

(r) = real (r)  (r) = cell,n (r) (r Rn )( )
n

 cell (r) (r Rn )
n

= cell,n (r)  cell (r)( ) (r Rn )[ ]
n

.
 (2.4) 

Note that real(r) and also (r) are not periodic. 
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2.1.2. Bragg scattering from ordered and average crystal structures 

In kinematical scattering theory, the Fourier transform of an electron density distribution (r) 

yields the structure factor F(h). In the following, FT(g(x)) denotes the Fourier transform operator 

on a function g(x). Thus: 

F(h) = FT (r)( ) = (r) e2 ihrdr . (2.5) 

h = (h,k,l) is a reciprocal-space vector. With the assumption that the electron density distribution 

of a crystal structure, (r), is the sum of electron densities j(r) of individual atoms j located at 

positions Rj, i.e. 

(r) = j (r) (r R j )( )
j

, (2.6) 

one obtains by Fourier transform and by use of the convolution theorem 

F(h) = f j (h) e
2 ihR j

j

. (2.7) 

fj(h) is the atomic form factor of atom j, corresponding to the Fourier transform of the atomic 

electron density j(r): 

f j (h) = j (r) e
2 ihrdr . (2.8) 

With eq. 2.7 the structure factor of an average structure (r) is obtained as 

Fhkl (h) = f j (h) e
2 ihR j

0

j

. (2.9) 

Here, fj denotes the form factor of an atom site in the average structure. By the use of the 

periodicity of (r) (eq. 2.1), Fhkl(h) can be alternatively expressed as 

Fhkl (h) = FT  cell (r)( ) FT (r Rn )
n

 

 
 

 

 
 = f cell (h) e2 ihRn

n

= f cell (h)
1

V cell

(h Hu)
u

. (2.10) 

Here, fcell(h) is the form factor of the whole average cell. In analogy to real space, the sum of Dirac 

-function in the above expression represents the reciprocal lattice, including all reciprocal lattice 

vectors Hu. Vcell is the volume of the average unit cell, and is used for normalisation. 

Experimentally accessible are the scattering intensities, for which in the kinematic limit holds 

I(h) = F(h)
2

= F(h)F (h) . (2.11) 

The scattering intensities of the average structure are thus 

IBragg (h) = Fhkl (h)
2

= f j (h)
 j 

f
 j (h)

j

e2 ih(R j
0 -R  j 

0 )

= f cell (h) f cell (h)
1

V cell
2 (h Hu)

u

.
 (2.12) 
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Accordingly, Bragg scattering intensities are constricted to sharp peaks at discrete reciprocal 

lattice points. Bragg scattering is a coherent summation of intensities, i.e. all unit cells contribute 

scattering intensities in an equal measure to a given reciprocal lattice point. This allows structure 

solution by re-assigning phase information to experimentally measured intensities by direct 

methods and inverse Fourier transform of the obtained structure factors to the electron density 

distribution. 

2.1.3. Diffuse scattering from disordered crystal structures 

In the following, a disordered real crystal structure is considered that allows for both, chemical and 

positional disorder. The actual site Rj of each atom j is shifted by a displacement uj from its 

average position, i.e. Rj = Rj
0 + uj. The electron density of a real structure site is real,j(r). 

Vacancies are allowed with real,j(r) = 0. With freal,j(h) = FT( real,j(r)), the structure factor of the 

real structure, Freal(h), is 

Freal (h) = freal, j (h) e
2 ih(R j

0
+u j )

j

. (2.13) 

Similarly, the structure factor of the difference structure, F (h), is the difference of eqs. 2.13 and 

2.9: 

F (h) = Freal (h) Fhkl (h) = f real, j (h) e
2 ih(R j

0 +u j )

j

f j e
2 ihR j

0

j

= f real, j (h) e
2 ihu j f j( ) e2 ihR j

0

j

.
 (2.14) 

Finally, the scattering intensities arising from F (h) are according to eq. 2.11: 

Idiffuse (h) = F (h)
2

= f real, j (h) e2 ihu j f j (h)( )
 j 

f real,  j (h) e 2 ihu  j f
 j (h)( )

j

e2 ih(R j
0 -R  j 

0 ) .
 (2.15) 

In a completely ordered structure, all uj become zero, and freal,j = fj. As a consequence Idiffuse 

vanishes. Conversely, if there is a random distribution of atoms in the real structure, interference 

of the Fourier coefficients vanishes, and the resulting diffuse scattering intensity distribution of 

uncorrelated atoms is broad and featureless (corresponding to monotonic Laue scattering, cf. von 

Laue, 1941, p. 177). However, all intermediate steps between perfect order and random disorder 

will cause interference of the Fourier coefficients in eq. 2.15. The resulting structured features in 

the continuous diffuse scattering distribution can be unravelled by use of reciprocal space methods 

(for examples see section 2.3), or by PDF analysis. 
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Unlike IBragg(h), Idiffuse(h) is a continuous function. Scattered wavetrains originating from 

different parts of the disordered structure show fluctuations in scattering amplitudes and phase 

shifts at a given h, and hence they effectuate an incoherent summation of intensities, which is 

averaged over space and time. This prevents structure solution by direct methods. 

However, in order to investigate disorder by means of diffuse scattering intensities, it is 

practically impossible to sum up intensity contributions of all atom pairs in a crystal structure as it 

is suggested by eq. 2.15. Therefore it is more convenient to evaluate diffuse scattering in terms of 

statistical relationships of the form factors and atom positions. In this regard, a general description 

of diffuse scattering was given, e.g. by Welberry & Butler (1995). Their approach is based on 

short-range pair correlations of individual atoms taking into account chemical and displacive 

disorder. The diffuse intensity is thus 

Idiffuse (h) = Nmc j ck f j fk
pm
jk

ck
e2 ihu m

jk

e2 ihu jk 

 
 

 

 
 e
2 ihRm

j,km

. (2.16) 

The summation runs over all interatomic pair vectors Rm of the average structure. Nm is the total 

number of atomic pairs associated with the vector Rm in the structure. The indices j and k denote 

the atom types connected by Rm. cj and ck are the concentrations of these atom types, and pjk 
m, is the 

probability that there exists an atom of species k at the end of the vector Rm + ujk 
m, provided that 

there is an atom of species j at the origin of the vector. u is the local deviation of the respective 

interatomic vector from the associated average vector Rm. Symbols …  indicate that the 

exponential functions are averaged over the appropriate displacements u: In case of ujk 
m, this 

average is taken only over all displacements where atom types j and k are linked by Rm, in case of 

u
jk, by contrast, the average is taken over all displacements linking two appropriate atoms. For 

more details see Welberry & Butler (1995). 

It can be seen from eqs. 2.12 and 2.15 that scattering intensities are not dependent on the 

absolute positions of atoms, but only on the difference Rj
0 - Rj'

0 of atomic pairs. For that reason, 

Patterson (see section 2.2) and PDF methods (see below) are just able to recover interatomic 

distances, but no atom positions. 

2.1.4. Pair Distribution Function analysis 

The Pair Distribution Function (PDF) is a density distribution function, accumulating the 

probability for a pair of densities being existent at a certain distance. It can also be interpreted as 

an auto-correlation function. Mathematically, the PDF is obtained by inverse Fourier Transform of 

the real-valued frequency domain of any density distribution into the pair correlation domain. In 

crystallographic and other materials-related applications, the basic underlying density distribution 
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is in case of X-ray scattering methods the electron density, in case of neutron scattering it is the 

nuclear scattering length, respectively. The frequency domain is represented by X-ray or neutron 

diffraction patterns. The underlying pair correlation domain is made up by electron density or 

nuclear scattering length correlations, i.e. by interatomic distances between electron shells or 

atomic nuclei. In this work, the focus is put on X-ray diffraction only, but the concepts may be 

easily transferred to neutron diffraction investigations. 

The density of the PDF at a given distance is proportional to the multiplicity of atom pairs 

separated by this distance, and to the products of the scattering power of each pair. In the present 

work, 3D-PDF densities are computed by Fourier Transform from single crystal scattering data. 

With the total scattering intensities 

Itot (h) = IBragg (h) + Idiffuse (h)  (2.17) 

one obtains the 3D-PDF 

Ptot (r) = FT Itot (h)( ) = FT Fhkl (h)
2( ) + FT F (h)

2( ). (2.18) 

However, Bragg scattering intensities are generally several orders of magnitude stronger than 

diffuse scattering intensities (i.e. |Fhkl(h)|2 >> |F (h)|2). Consequently, pair correlations of the 

average structure are predominant in the resulting PDF (i.e. FT(|Fhkl(h)|2) >> FT(|F (h)|2)), hiding 

the underlying correlations of the local, disordered structural features. The basic idea of the 

presented method of PDF analysis is to extract the diffuse scattering intensities from the 

experimental data and to compute a PDF from diffuse scattering alone. As Bragg scattering 

intensities are omitted, the resulting PDF exclusively comprises all pair correlations of the 

deviations of the real crystal structure relative to the average structure, i.e. it shows the differences 

between the real structure and the average structure. By Fourier transform of the isolated diffuse 

scattering intensities, one obtains the so-called 3D- PDF, being 

P (r) = FT F (h)
2( ) = FT Itot (h) Fhkl (h)

2( ). (2.19) 

In practice, this approach is advantageous over computing the total scattering PDF, even though 

additional data processing steps are necessary. In PDF space, pair correlation lengths within local, 

disordered motifs of the real structure are similar to those of short atomic distances within the 

ordered average structure, which impairs the interpretation of a total scattering 3D-PDF. In 

reciprocal space, on the other hand, the frequency distribution of the average structure is confined 

to well-defined lattice points. Hence, in most parts of reciprocal space, the difference 

Itot(h) - |Fhkl(h)|2 can be easily calculated. Special care has only to be taken at Bragg positions (see 

section 5.3). For a detailed derivation, definitions, and properties of the 3D-PDF and 3D- PDF see 

sections 3.2 and 4.2. 
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2.1.5. One-dimensional PDF analysis of crystalline powder samples 

One-dimensional (1D) PDF analysis is widely used for structural investigation of amorphous 

glasses and liquids, as well as of disordered crystals. For an introduction see e.g. Egami & Billinge 

(2003), Proffen et al. (2003), Proffen & Kim (2009). In the last years, it has become more and 

more successful in analysing the real structure of nano-particles (e.g. Neder & Korsunskiy, 2005; 

Billinge, 2008). Up to date, PDF analysis of crystallographic samples is carried out on the basis of 

powder scattering experiments. The total scattering intensities are included, i.e. information about 

the average structure (Bragg scattering) and local disorder (diffuse scattering) is processed at the 

same time. In contrast to other crystallographic methods, no periodicity is implied, which favours 

the method for investigation of structural disorder. As the method is based on 1D scattering 

intensities, the resulting PDF is also 1D, i.e. it is a function of the norms of interatomic vectors. 

Angular information on these interatomic vectors, however, is not available, which limits the 

structural interpretation noticeably. To avoid termination errors and to resolve accurately 

overlapping pair correlations with similar length (but possibly different angular orientations), it is 

necessary to measure up to very high diffraction angles in experiments. 

Some structural information can be directly extracted from powder diffraction based PDFs (for 

an overview see Egami & Billinge (2003)): typical bond-lengths can be measured from PDF peak 

positions (e.g. Dove et al., 1997; Petkov et al., 1999), the integrated intensity of PDF peaks reveals 

information about coordination numbers (Louca & Egami, 1999; Petkov et al., 1999). PDF peak 

widths as a function of temperature (Billinge et al., 1996), doping (Bozin et al., 2000), or 

interatomic distances (Jeong et al., 1999) are used to obtain details about the atom-pair distribution 

probability. More reliable information, however, is acquired by simulation and optimisation of the 

PDFs of structural models. The powder PDF can directly be calculated from a structural model. To 

fit the model PDF to experimental data, the most common method is so-called real-space Rietveld 

analysis (Proffen & Billinge, 1999). However, to avoid ambiguities in the structural data projected 

to 1D, detailed preliminary knowledge of the structure is required. In literature, different 

definitions and formalisms of 1D PDFs are used. An overview of some variants is given by Keen 

(2001). 

By extending the PDF method to 3D space, based on 3D single crystal diffraction, the above-

mentioned limitations can be bypassed. Especially by abandoning the strict concept of total 

scattering transformation, the presented method of PDF analysis (see sections 3.2 and 4.2.2) 

allows a straightforward interpretation of selected aspects of structural disorder. 
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2.1.6. Disorder in quasicrystals 

One main focus of this work is on the investigation of structural disorder in a decagonal 

quasicrystalline phase (see chapter 4). For a recent general introduction to quasicrystals see e.g. 

Steurer & Deloudi (2009). Quasicrystals are complex materials and most approaches done so far to 

solve a quasicrystal’s structure just give an approximation on the real structure. Diffuse scattering 

is a frequent feature in diffraction patterns of quasicrystalline structures. Presence of diffuse 

scattering intensities is not a stringent indication of disorder in quasicrystals (Weber & Steurer, 

2008), but structural disorder is often a characteristic of aperiodic crystal structures (see e.g. 

Welberry & Butler, 1995; Steurer & Frey, 1998). The same types of disorder that are known from 

periodic crystals are also observed in quasicrystals. Static disorder like displacive, orientational, 

substitutional, or rarely glass-like disorder is found, as well as dynamic disorder due to phononic 

excitations, which becomes manifest in the form of thermal diffuse scattering (TDS). Additional 

types of disorder are particular for quasicrystals, such as phasonic disorder producing phasonic 

diffuse scattering (PDS, which is equivalent to TDS, but the underlying displacements are along 

higher-dimensional directions), quasiperiodic approximant domains, or out-of-phase domains in 

higher dimensions. In decagonal phases, which combine of 1D periodic ordering along a unique 

fivefold axis and aperiodic ordering in quasiperiodic layers perpendicular thereto, the frequent 

presence of diffuse scattering intensities indicates respectable structural disorder (Frey & Steurer, 

1993; Frey, 2000; Frey & Weidner, 2003). Even there are many publications concerning diffuse 

scattering of quasicrystals, quantitative investigations of diffuse scattering and structural disorder 

of decagonal quasicrystals has still not been accomplished in detail so far. An overview on 

previous research is given in sections 4.1 and 4.3.2. 

Up to now, there is still an uncertainty about energetic and/or entropic stabilization of 

quasicrystalline structures, and the role of disorder concerning this matter is not yet investigated 

sufficiently. It is not proven, whether quasicrystalline structures are a ground state of matter, i.e. 

they are stable down to 0 K, or if they are entropy stabilized high-temperature phases. In the latter 

case, disordered domains could be a transitional state in the transformation to periodic low-

temperature phases. Further, the question, if quasicrystal structures are quasiperiodic in a strict 

sense, or if they are just quasiperiodic on average with locally disordered domains, in not answered 

yet. Thus, specific knowledge about disorder in quasicrystals may be of importance in solving 

these problems. 
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2.1.7. Reciprocal space vs. PDF space methods 

The majority of current single-crystal methods for studying disorder is directly based on reciprocal 

space (see section 2.3). Qualitative interpretation of diffuse scattering patterns allows the 

understanding of the underlying disorder to a certain extent, e.g. the dimensionality of disorder, 

but a more detailed analysis is often intricate. By contrast, PDF space has the same metrics as real 

space. As a result, PDF analysis allows a direct interpretation of structural features, such as the 

lengths and directions of the pair correlations and the maximum correlation length. 

Fourier transforms are invertible. Hence the information content carried by diffuse scattering 

intensities is identical to that of their Fourier transform, i.e. the PDF. Although the 

transformation into PDF space is an additional effort in data processing, modelling of disordered 

structures may be easier and more comprehensible by fitting within the pair correlation domain. 

Whereas the change of the properties of one single atomic position causes a slight modification of 

the whole reciprocal space intensities, in PDF space only correlation vectors associated with the 

changed atom are affected, resulting in a limited number of locally well-confined variations of 

PDF densities. In human perception, changes in PDF space are easier to grasp than in reciprocal 

space, and qualitative interpretation of PDF densities provides good starting models. Also in 

structural analysis and modelling by means of automated data processing and filtering, 

implementations in PDF space have the advantage that data can be manipulated at 

straightforwardly determinable coordinates. The use of intricate frequency filters becomes obsolete 

in reciprocal space (cf. section 6.4). 

As it will be shown below, PDF modelling permits easily to model isolated parts of the 

disordered local structure and fitting these to selected parts of the PDF, without considering the 

complete crystal structure. In this way, multiple self-contained structural motifs can be modelled 

simultaneously with independent, overlapping PDF densities, provided that their internal pair-

correlations are not too similar to be distinguished. Moreover, if specific correlation lengths are of 

major or minor interest respectively, pair-correlation densities can be accentuated, weakened or 

excluded from evaluation by the use of straightforward weighting or masking filters. Such 

localised and selective data handling, on the same scale as the associated structural features, makes 

PDF modelling of disordered structures a very powerful tool, and even partial or partially correct 

models will lead to interpretable results (for an example see section 4.3.5). 

All data manipulation and filtering processes applied in PDF space can, of course, also be 

realised in reciprocal space, and vice versa. However, e.g. simple weighting or masking filters, 

which are implemented by multiplication of data values in one space, are equivalent to more 

intricate band-pass filters realised by convolution operations in the complementary space. Thus, 
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for each required data manipulation it is essential in which domain, reciprocal space or PDF space, 

the data are treated, because the implementation and the understanding of the data manipulations 

will be simplified. Examples for data manipulations in reciprocal space implemented in this work 

are the removal of background intensities (see section 5.2) and the separation of Bragg and diffuse 

scattering intensities (see section 5.3) in experimental data, or the application of a detector 

envelope mask function on modelled data in order to simulate truncation effects when computing 

the PDF (see section 4.3.5). On the contrary, modelling of intra-cluster disorder by the use of an 

attenuation function (see section 4.3.5), or the restriction of fitness function evaluation to a 

maximum correlation range during model refinement (see section 4.3.6) could easier be realised in 

PDF space than in reciprocal space (see also section 6.4.2). 

2.2. Average-Structure Solution with Patterson Methods 

2.2.1. The Patterson function 

Patterson methods are well-established for the solution of average structures of crystals. In 

particular before direct methods became widely available they were one of the most important 

tools in structural crystallography. Patterson methods base on the analysis of correlations between 

atomic pairs. They are closely related to the PDF method, with the main difference that Patterson 

methods base on Bragg scattering, and that they reveal information about average structures, thus. 

The basis of all methods that are grouped under the term Patterson methods is the Patterson 

function (Patterson, 1934, 1935). Here, the Patterson function is discussed in terms of electron 

density distributions in X-ray scattering investigations, but it can be applied on any density 

distribution, e.g. the nuclear scattering length in neutron diffraction investigations. The Patterson 

function is 

Phkl (r) = (r) ( r) = (r0) (r0 + r)dr0 . (2.20) 

Alternatively, Phkl(r) can be expressed as the Fourier transform of Bragg scattering intensities: 

Phkl (r) = Fhkl (h)
2
e2 irhdh  (2.21) 

or, as |Fhkl(h)|2 = |Fhkl(-h)|
2, 

Phkl (r) = Fhkl (h)
2
cos(2 rh)dh . (2.22) 
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Phkl is a distribution function of interatomic distances. As no phase information is included, the 

Patterson function does not allow the determination of absolute atom positions. It only reveals the 

relative positions of all atomic pairs within a crystal structure. The integrated density of a 

Patterson peak is proportional to the product of scattering power, i.e. the atomic number, of the 

two atoms at the origin and the end of the interatomic vector r, and to the multiplicity of all atomic 

pairs separated by r in the whole crystal structure. Phkl(r) is always centrosymmetric, having the 

Laue symmetry of the crystal's unit cell combined with the Bravais lattice symmetry. There are 24 

of such possible centrosymmetric space groups. The periodicity and the unit cell of Phkl(r) are the 

same as of the associated crystal structure. However, the peak density in a Patterson cell is much 

higher than in the corresponding electron density distribution: If a crystal structure consists of N 

atoms, there are N
2 interatomic vectors. N of these, which correlate each atom with itself, have 

zero length and contribute to the strong origin peak of a Patterson function. The remaining 

N (N - 1) vectors are distributed throughout Patterson space. All the same, the interpretation of 

Patterson functions is considerably hampered by several factors that produce a high level of 

overlapping peaks. First of all, the above-mentioned peak density in a Patterson map is increased 

by a factor N compared to (r). Further, Patterson peaks are broader than electron density peaks of 

atoms, because their width results from the convolution of both of the constituent electron density 

peaks. And, not least of all, there are often multiple similar or equal independent interatomic 

vectors present in a structure, generating superimposed Patterson peaks. 

2.2.2. Harker lines and sections 

Harker (1936) realised that the symmetry elements of a crystal structure influence the spatial 

distribution of Patterson peaks. Atoms located on general positions have particularly oriented 

interatomic vectors to equivalent positions linked by a symmetry operation. Atom pairs linked by a 

planar element, i.e. a mirror plane or a glide plane, produce Patterson peaks that are located on 

lines (Harker lines) normal to the orientation of that plane. Conversely, atom pairs linked by linear 

symmetry elements, i.e. rotation axes and screw axes, effectuate Patterson peaks that are clustered 

in planes (Harker sections) in an orientation perpendicular to these axes. By analysis of such 

special sections with accumulated peak density in Patterson space, the space group symmetry of a 

crystal structure can be identified. However, Harker analysis is limited, as atoms on special 

positions do not contribute to Harker lines or sections corresponding to the symmetry elements 

they are lying on; in contrast, there may be a notable amount of randomly coinciding, but 

symmetry-independent peaks in Harker sections. 
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2.2.3. The heavy atom method 

The integrated density of a Patterson peak is proportional to the atomic number of the atom pair 

involved. If there is a limited number of atoms with high atomic number in a structure that consists 

of comparatively light atoms otherwise, the Patterson function will contain a manageable number 

of strong peaks due to correlations between the heavy atoms. A bigger number of intermediate 

peaks is due to heavy–light correlations, but most peaks are weak, due to light–light correlations. 

The latter can usually not be resolved in a satisfying way and merge to a background signal. 

From the distribution of the strong Patterson peaks, it is oftentimes possible to guess the 

electron density distribution function of the partial structure made up by heavy atoms. If the 

position of the heavy atoms is known, also their phase contribution to Fhkl(h) is known. The phases 

of heavy atoms dominate the total phases sufficiently in order they can be used as an 

approximation to these, and thus, also positions of light atoms can be roughly assigned. Based on 

this information, it is possible to successively refine all phases and atom positions in an iterative 

process. 

The heavy atom method is in particular successful for centrosymmetric crystal structures, 

where the assignment of phases is just a decision between the two possible values 0 or . In this 

case, the signs of the heavy atom phases match to a high degree the correct solution. 

Structural solution techniques similar to the heavy atom method are possible, if a Patterson map 

contains peaks that originate from high multiplicity of a known structural unit, such as a molecule 

or a structural cluster (e.g. Nordman & Nakatsu, 1963; Burnett & Rossmann, 1971). 

2.2.4. Special applications of Patterson methods 

Apart from the techniques explained above, many other applications of Patterson methods were 

used for structure solution so far. These applications often base on problem-related assumptions, or 

need specific requirements to be fulfilled. Out of these variants, one particular example is specially 

worth mentioning, because it illustrates the parallels of Patterson analysis to the PDF approach 

presented in this work. Black (1955) determined the (average) structure of monoclinic Al13Fe4. As 

we know today, this compound is an approximant structure to d-Al–Cu–Co quasicrystals (see 

section 4.3.2). Black (1955) compared special 2D sections of the 3D Patterson function to show 

that the layered structure of Al13Fe4 is made up of a stacking sequence of alternating flat and 

internally puckered layers. These Patterson sections were chosen so that they either comprised 

intra-layer pair correlation vectors of flat layers, intra-layer pair correlation vectors of puckered 

layers, or inter-layer pair correlation vectors between adjacent flat and puckered layers. A very 



 2. FUNDAMENTALS 

  17 

similar approach to Black's one was now successfully applied in PDF analysis (chapter 4). But 

instead of analysing the Patterson function calculated from Bragg intensities in case of the long-

range ordered approximant structure, the PDF investigation was based on diffuse scattering 

intensities of disordered d-Al–Cu–Co. 

2.3. Real-structure Solution Based on Single-Crystal Diffraction 

Whereas PDF analysis is a well-established investigation technique for the real structure of 

disordered crystalline powders (see section 2.1.5), in single crystal investigations reciprocal-space 

based modelling techniques are commonly in use nowadays. An overview of such diffuse 

scattering simulation techniques is given in the following. 

2.3.1. Analytical mathematical expressions 

A way in which diffuse scattering may be described is by simulation of the diffraction pattern by 

analytical mathematical expressions. This approach allows very fast computations, as there is no 

need to build up large atomic structure models, as it is e.g. the case in Monte Carlo simulations 

(see below), However, it is restricted to relatively simple structures as mathematical complexity 

increases drastically with the complexity of the underlying problem. A recent application was 

presented e.g. by Bürgi et al. (2005). 

2.3.2. Infinite series expansions 

An alternative mathematical approach to describe diffuse scattering is the use of infinite series 

expansions. The basic concept is to approximate the observed diffuse scattering intensities by 

expansion of an expression describing the scattering intensities of a structural model. Thus, the 

diffuse scattering intensities are expressed as an infinite sum of terms of increasing order: 

  
Idiffuse I(0) + I(1) + I(2) + I(3) + I(4 ) +K (2.23) 

Possible expansions are e.g. power series (Cowley, 1995, pp. 266ff), Taylor series (Butler & 

Welberry, 1993), or Fourier-Bessel series (Frey, 1995). A first-order expansion to a Taylor series 

of atomic displacements was introduced by Warren et al. (1951), and different extensions to 

higher-order series were made since then (e.g. Borie & Sparks, 1971; Butler & Welberry, 1993). 
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The more high-order terms are included in the calculation, the better the whole diffraction 

pattern is approached. However, the contribution of higher-order terms to the scattering intensities 

decreases with increasing order, whereas the complexity of the terms grows with their order, and 

the number of component intensities that have to be calculated increases rapidly. A detailed 

discussion of this aspect on Taylor series expansions is given in (Butler & Welberry, 1993; 

Welberry & Butler, 1994). 

2.3.3. Monte Carlo methods 

Monte Carlo models are a powerful and widely used state-of-the-art method for description of 

3D real structures of single-crystals. It is based on iterative optimisation using random alterations 

of a model. For an overview see e.g. Proffen & Welberry (1998), McGreevy (2001), Welberry 

(2009). Structural modelling is based on the known average structure, on a qualitative 

interpretation of experimental diffuse intensities, or on a model representation guessed by trial-

and-error. Monte Carlo models are set up as a function of random variables describing atom 

positions and occupancies, or orientations of bigger structural units such as clusters or molecules. 

In the variant of direct Monte Carlo simulation, which is based on a method by Metropolis et 

al. (1953), near-neighbour interatomic or intermolecular interactions are defined to describe the 

energy of the model structure. After random changes of the parameters of a randomly chosen site, 

the total energy of the altered structure is compared to the energy of the previous state. The change 

of parameters is then accepted or rejected based on a probability, which is a function of the 

difference in energies. In this way a minimum energy conformation is searched by successive 

iteration. When an energetic equilibrium state is sufficiently approached, the diffraction pattern of 

the structure is computed and compared to the experimental data, to test whether the new model 

fits better to the data than the previous one. The procedure is repeated, until the model converges 

to an optimal configuration. Optimisation is done using either least-squares minimisation 

(Welberry et al., 1998), or evolutionary optimisation techniques (Weber & Bürgi, 2002; Weber, 

2005). Least-squares refinements have the tendency to get trapped in local minima during the 

iteration, i.e. the starting model has to be located close to the global minimum in search space. 

Evolutionary refinement techniques on the other hand, may start with a wide parameter range in 

search space and approach the global minimum successively. However, convergence may be fairly 

slow. 

Direct Monte Carlo simulation has the advantage that propagation of near-neighbour 

interactions throughout the whole model structure allows setting up large models with only a few 

free parameters to be optimised. However, the model structure has to be sufficiently large enough 
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to be representative for a real crystal structure. In order that statistical effects are small, and the 

obtained diffraction pattern does not show strong noise, Welberry et al. (1998) recommend to 

cover at least 32 32 32 unit cells. Hence Monte Carlo models typically comprise hundred 

thousands or millions of atom sites, and the resulting computational effort is therefore big and 

time-consuming. Another drawback is that the parameters used for optimisation do often not have 

a direct physical or crystallographic meaning. Thus, a direct structural interpretation, control of the 

model parameters, or a comparison to other systems is hardly possible. 

Another variant, reverse Monte Carlo modelling (McGreevy, 2001), was first developed by 

McGreevy & Pusztai (1988) and was later adapted to single-crystal simulation (Nield et al., 1995; 

Proffen & Welberry, 1997). 

In reverse Monte Carlo optimisation, the procedure is basically the same as in the direct Monte 

Carlo method, except that the differences between observed and calculated scattering intensities 

after alteration of a randomly chosen atom site are directly evaluated, instead of minimizing the 

total energy before. The computation of the energy terms is omitted, but instead, more iterations, 

including extensive computations of diffuse scattering patterns, may be necessary to reach 

convergence, as more inappropriate model configurations will be produced. Further, because of a 

common over-parameterisation, reverse Monte Carlo simulations are not unique and tend to fit 

artefacts (Welberry & Proffen, 1998; Weber, 2005). Though the resulting modelled scattering 

intensities may show a good agreement to the observed ones, the structural solution may be quite 

likely different from the real crystal structure or even unphysical. Accordingly, reverse Monte 

Carlo models need often to be constrained using additional structural information. 
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Pair distribution function (PDF) analysis, based on experimental X-ray or
neutron diffraction data of crystalline powders, provides an insight into structural
disorder of complex materials. However, the observation of interatomic vectors
is confined to their norms. Based on three-dimensional single crystal X-ray
diffraction data, the methodical approach presented here is an upgrade of current
PDF analysis that considers the effective spatial orientation of interatomic
vectors and, thus, provides a basis for a better and direct understanding of
the structural composition of complex crystalline materials. The usability of
three-dimensional difference PDF analysis is exemplified by the disordered
structure of N,N0,N00-tris-t-butyl-1,3,5-benzene tricarboxamide.

1. Introduction

The pair distribution function (PDF) expresses the probability of finding two atoms
at a given distance. In practice, the PDF is obtained by Fourier transform of the total
scattering intensities (i.e. both Bragg and diffuse scattering) of X-ray or neutron
diffraction experiments.

PDF analysis of powder data is a familiar tool for the investigation of structural
disorder in crystalline materials. A full overview of this technique and its applications
is given by [1]. Nonetheless, the common powder PDFs are rotational projections of
three-dimensional (3D) interatomic vectors onto a one-dimensional Patterson space.
Accordingly, no information on the spatial orientation of interatomic vectors is
considered. At the same time, distinct interatomic vectors of similar lengths but
disparate directions, are superimposed in the powder PDF. The interpretation of a
powder PDF is, as a consequence, not always unambiguous and often demands
precise presumptions about the structure.

In the present study, a new method for the PDF analysis is introduced which is
based on single crystal X-ray scattering data and, hence, eliminates the deficiencies
mentioned above. Since the primary data are 3D, the computed PDF is also 3D and
represents both the lengths and the angular information of interatomic vectors.
Computation is performed in an analogue way to the powder PDF by Fourier
transform, except that three dimensions are now considered.
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2. Three-dimensional difference PDF

Disorder in a crystal structure may be considered as a set of non-periodic deviations
from a virtual average structure with a periodic lattice. Hence, the electron density
�(r) of a disordered crystal may be split up into two parts – a periodic term that
corresponds to the average structure and a non-periodic term that covers all
deviations of the former:

�ðrÞ ¼ ��ðrÞ þ��ðrÞ: ð1Þ
By the same token, the scattering intensities I(u) of an ideal infinite crystal can be
expressed as a composite of two terms [2]:

IðuÞ ¼ j �FðuÞj2 þ j�FðuÞj2 ð2Þ
| �F(u)|2 is the Bragg scattering originating from the average structure. Conversely,
|�F(u)|2 is the diffuse scattering due to local disorder.

A PDF is generally obtained by Fourier transform (FT ) of scattering intensities.
With equation (2), one obtains:

PtotðrÞ ¼ FT ½IðuÞ� ¼ FT
�j �FðuÞj2�þ FT

�j�FðuÞj2� ¼ PhklðrÞ þ�PðrÞ ð3Þ
Ptot(r) is called the generalized Patterson function or the total scattering PDF.
Its calculation involves the whole reciprocal space. In contrast, the periodic
Patterson function Phkl(r) is restricted to the integral reciprocal lattice vectors
and represents the correlation function of the periodic average lattice. �P(r) is the
auto-correlation function of the non-periodic component in the real crystal structure
and it is exempt from all information on the periodic average lattice. Since it is
defined as the difference between the total scattering PDF and the periodic Patterson
function, it is referred to as the difference 3D-PDF, henceforth.

Diffuse scattering is usually several orders of magnitude weaker than Bragg
scattering. As a result, the total scattering PDF will be primarily dominated by the
auto-correlation of the average structure. Thus, the pair correlations of the average
structure may prohibit the characterization of local disorder starting from the total
scattering PDF. To bypass this problem, the method of difference PDF analysis
focuses on the computation and interpretation of �P(r).

3. Data processing

A prerequisite for the presented method of difference 3D-PDF analysis is a single
crystal dataset of high quality. It is beneficial to have a high signal-to-noise ratio on
the diffuse scattering and low background noise. The recorded oscillation range
should cover at least one asymmetrical unit in reciprocal space; however, a major
redundancy of symmetry is favourable because it increases the signal-to-background
ratio and diminishes observational errors by means of the symmetry averaging
process described below. Finally, the maximum diffraction angle measured should
be chosen as wide as possible because it determines the pixel resolution of the
calculated PDF.
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The process of obtaining the difference 3D-PDF from experimental single
crystal data that fulfil the above requirements involves several successive steps:
reconstruction of a volume of scattering intensities from raw data into reciprocal
space coordinates, data-quality enhancement by use of 3D symmetry equivalent
averaging, extraction of diffuse scattering from the total scattering intensities, and
ultimately the computation of the difference 3D-PDF by Fourier transform of these
diffuse intensities.

The reconstruction of the intensities in undistorted reciprocal space coordinates
is carried out with appropriate crystallographic software. Depending on the
orientation of the sample during the measurement and the covered oscillation
range, the reconstructed volume of scattering intensities is, usually, irregularly
shaped. To minimize spurious truncation effects in the Fourier transform, the
volume of reciprocal space, however, should be as large and complete as possible.
To accomplish this, the reconstructed volume is averaged with all its symmetrically
equivalent orientations in respect of the Laue symmetry of the sample. By means of
this averaging process, not only the largest possible volume is achieved, but the
signal-to-noise ratio is also statistically augmented.

Thereafter, the non-periodic intensities have to be separated from those of the
average structure. This removal of Bragg peaks can be achieved in different ways;
a simple but effective approach, which will be detailed below, is by the use of the
punch and fill method. This method was originally introduced by Kobas et al. [3]
for cluster analysis of decagonal quasiperiodic crystals but, as we shall see, it is
suitable for all kinds of disordered crystals that produce a clear diffuse scattering.
Complementary to the filtering of Bragg scattering, subtraction of background
scattering has to be performed. Realistic models must consider anisotropy and
angular dependence of background intensities.

Finally, the difference 3D-PDF is computed by Fourier transform of the
extracted 3D diffuse scattering intensities.

4. Example of application

The method was tested with the known structure of N,N0,N00-tris-t-butyl-
1,3,5-benzene tricarboxamide. This organic compound crystallizes in a hexagonal
structure of space group P63/m with the lattice parameters a¼ 14.100 Å
and c¼ 6.930 Å [4]. The molecules are stacked in well-ordered homochiral columns
along the c-axis. These stacks exist in two different helical hands – so called ‘up’ and
‘down’ –, which laterally prefer an ‘up-down’ neighbouring. This local preference
shows, however, no long-range order [4].

This compound was chosen as it shows very clear diffuse scattering. Due to the
structure being well-ordered along the c-axis, the diffuse scattering is localized in
discrete and narrow layers perpendicular to the l-axis at integral values of l.
Within these layers, the diffuse scattering is arranged in hexagonal honeycomb-like
patterns. The Bragg peaks lie in the centre of the combs and barely overlap with
the diffuse scattering (see figure 1). The single crystal data were measured at the
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Swiss–Norwegian beamline at the ESRF synchrotron source in Grenoble (France),
using a Mar image plate detector.

The reconstruction of reciprocal space coordinates was performed with Xcavate
software [5]. As the scattering intensities are sparse in reciprocal space and limited
to layers with integral l-coordinates, only 13 hk-layers with l¼�6, . . . , 6 were
reconstructed. The hk0-layer had the widest extent of available data with a maximum
radius of 2sin �/�¼ 0.91 Å�1. All the reconstructed layers were stacked into a three-
dimensional array of 1215� 1215� 13 voxels. Such volumes were reconstructed for
all 12 symmetry equivalent orientations corresponding to the Laue group 6/m and,
finally, these data were taken together and averaged. From this volume of averaged
intensities, a volume of background intensities was subtracted. Based on the
assumption that background noise does not change significantly with small changes

Figure 1. Steps of data processing applied to the diffraction pattern of the hk1-layer of
N,N0,N00-tris-t-butyl-1,3,5-benzene tricarboxamide. From top left, in clockwise order: as
reconstructed from the raw data, after symmetry averaging, after subtraction of background
intensities, and after applying the punch and fill filter. The edges of each box cover a range
of �0.91 Å�1.
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in position, the background volume was obtained by symmetry equivalent averaging
of slices of reciprocal space that lay slightly above and below the layers containing
the scattering intensities.

After background removal, the diffuse scattering intensities were isolated with the
punch and fillmethod. As | �F(u)|2 is a sum of Dirac �-functions, it shows, in the case of
an ideal experiment, point-like non-zero values only for reciprocal position vectors u
with integral coordinate triplets. These Bragg peaks are broadened in the experimental
dataset of real crystals owing to convolution with a resolution function, but they still
remain restricted to comparatively small volumes of reciprocal space. Thus, for most
of the reciprocal space, the assumption j�F(u)j2¼ I(u) is valid (irrespective of the
underlying static background noise) and these scattering data persist, unaffected by
the punch and fill method. On the other hand, at the position of each observed Bragg
peak, a volume of data voxels is cleared (‘punch’). Not only are Bragg intensities culled
thereby but also part of the diffuse scattering intensities. These intensities have to be
reestablished from the surroundings of the eliminated volume (‘fill’). In the present
example, fixed spherical volumes with radius 0.01 Å were punched out. Thereafter,
they were refilled with an average value computed from their surroundings
(see figure 1). To obtain the difference 3D-PDF, the remaining data volume
was finally Fourier transformed by the use of the Fast Fourier transform algorithm
of the FFTW3 libraries [6]. This yielded a real space volume with an edge length
of 667 Å in the x- and y-direction and 6.93 Å in the z-direction.

To test the effect of filtering Bragg intensities in 3D-PDF analysis, a total
scattering 3D-PDF including Bragg and diffuse scattering was calculated
simultaneously.

5. Discussion

It is beyond the purpose of this publication to discuss the described data processing
and the quality of the data obtained. This will be the subject in a forthcoming paper.
In the following, an overview is given on some illustrative aspects of the
interpretation of the difference 3D-PDF of N,N0,N00-tris-t-butyl-1,3,5-benzene
tricarboxamide.

When the difference 3D-PDF of our test sample is compared to the total
scattering 3D-PDF, it is obvious that the information contained in the difference
PDF can barely be seen in the total scattering PDF because the auto-correlation of
the average structure is predominant over all the space (see figure 2).

The difference 3D-PDF describes the frequency distribution of interatomic
vectors in the real structure in relation to the average structure. The origin of the
distribution function lies in the centre of the data volume, with all position vectors
spanning relative to it. Positive values indicate interatomic vectors that occur more
frequently than in the average structure; negative values, on the other hand, indicate
a lowered frequency. Although the data are 3D, the focus in this discussion is limited
to a two-dimensional slice, normal to the c-axis and going through the origin.
This special layer comprises information on interatomic vectors with a vertical
component |�c|50.267 Å, i.e. all horizontal and sub-horizontal interatomic vectors
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of the given structure. It contains hexagonal patterns around the origin, alternating
with negative and positive values with increasing radial distance (see figure 2).
The main peaks, having radial distances of integer multiples of �14 Å, lie on the
vertices of a lattice, which matches the hexagonal lattice of the average structure.
Consequently, these main peaks originate from the translation vectors in the
a-direction, whereas the less distinct satellite peaks can be assigned to inter- or
intramolecular vectors.

The alternating change of positive and negative correlation with radial distance
reveals that there must be a systematic preference of the neighbouring molecules that
differs from the average structure. Actually, it is a lateral preference to heterochiral
pairs of molecules – compared to the average structure, the probability of finding
homochiral pairs is lower for the direct neighbours (negative PDF peaks) and higher
for the second-order neighbours (positive PDF values), etc. The continuous radial
falloff of the absolute values of the peaks indicates the short-range correlation of
disorder.

Note that this information on the real structure can even be obtained without
knowledge of the average structure.

Figure 2. Two-dimensional, horizontal slice at c¼ 0 of the difference 3D-PDF of N,N0,N00-
tris-t-butyl-1,3,5-benzene tricarboxamide. The superimposed pattern in the upper left corner is
the accordant total scattering PDF. Negative values are mapped in black colour; positive ones
in white. Note: strong negative values in the total scattering arise from the missing F(000)
reflection in the source data.
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6. Conclusion

Difference 3D-PDF analysis is a useful tool for investigating disorder in crystalline

materials available as single crystals. The application potential is shown in a simple

example. With this new method, local disorder can be described considering spatial

direction, i.e. interatomic vectors can be resolved via their angular orientation. In the

given example with substitutional disorder only, a standard synchrotron X-ray

scattering dataset was sufficient to provide results of satisfactory quality. Displacive

disorder, however, would imply higher experimental resolution. Nevertheless,

difference 3D-PDF analysis makes large demands on data processing, in particular,

the huge amount of data to be handled. Background subtraction and removal of

Bragg reflections by means of the punch and fill method could be realized with

comparatively simple techniques in the example studied because diffuse scattering

was restricted to narrow single layers and the Bragg reflections just marginally

overlapped with the diffuse scattering. For more intricate systems, of course, more

advanced approaches in data processing are needed. Likewise, our understanding

of the 3D-PDF needs to be improved and adequate techniques developed for the

realization of complete models of disorder based on the 3D-PDF.
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Appendix 3.A: Addendum to bibliography 

The definitive, correct bibliographical record for reference [4] in the reference section above is: 

[4] M. Kristiansen, P. Smith, H. Chanzy, et al., Crystal Growth & Design 9 6 (2009). 

Appendix 3.B: Supplementary 3D- PDF data 

Fig. 3.3 shows the complete 3D- PDF of N,N',N''-tris-t-butyl-1,3,5-benzene tricarboxamide 

including, supplementary to Fig. 3.2, also correlation vectors with a component along c direction 

other than ~0.000 Å. In all PDF-layers, the correlations between columnar molecules are 

reflected in the arrangement of the main peaks on a hexagonal lattice. The PDF-layer comprising 

vectors with a vertical component of ~3.41 Å  c/2 contains densities similar to those at ~0.000 Å, 

tough the signs are inverted. This indicates that the 'up' and 'down' hand of the molecules are 

shifted by c/2 along c relative to each other. Minor satellite peaks are due to intra-molecular 

correlations and to inter-molecular correlations that are, owing to the connection of different parts 

of the molecular columns, slightly shorter or longer than the lattice vectors. 

From Fig. 3.4 the maximum correlation length (for a definition see section 4.2.2) perpendicular 

to c can be estimated to be approximately 150 Å. This length corresponds to a range of about 10 

neighbouring shells of molecules. 
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Figure 3.3: Two-dimensional (xP,yP)-sections at different zP of the 3D- PDF of N,N',N''-tris-t-butyl-1,3,5-

benzene tricarboxamide, computed from single crystal X-ray diffuse scattering (extracted from total 

scattering intensities via a “punch-and-fill” filter). Positive pair correlations are in white colour, negative 

ones in black. The centre of the sections is at xP = yP = 0. The images cover ±68.6 Å along each axis. (For a 

definition of the coordinate system (xP, yP, zP) see section 4.3.3. 
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Figure 3.4: Larger two-dimensional sections of the 3D- PDF of N,N',N''-tris-t-butyl-1,3,5-benzene 

tricarboxamide (cf. Fig. 3.3), showing inter-molecular neighbouring correlations up to about 10th order. The 

images cover ±164.7 Å along each axis. In order to visualise weak medium-range pair correlations, the 

colour contrast was amplified compared to Fig. 3.3. 
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This chapter contains a reprint of the article: 

 

Schaub, Ph., Weber, Th. & Steurer, W. (2011): Analysis and modelling of structural disorder by 

the use of the three-dimensional pair distribution function method exemplified by the 

disordered twofold superstructure of decagonal Al–Cu–Co. Journal of Applied Crystallography 

44 (1), in press. 

 

Additional results and figures to this article are presented in Appendices 4.A and 4.B. 
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Theoretical concepts and the practical application of the three-dimensional pair

distribution function (3D-PDF) method and its variant, the three-dimensional

�-pair distribution function (3D-�PDF) method, are presented. In analogy to

traditional Patterson function analysis, advantage is taken of the Fourier

transformation either of the full three-dimensional diffraction pattern of a

disordered crystal or just of the isolated diffuse scattering, respectively. By the

use of three-dimensional information, analysis of disorder becomes straightfor-

ward, and it becomes possible to investigate far more complicated structures

than is feasible with well established powder diffraction-based PDF analysis.

Compared to more traditional modelling techniques, such as Monte Carlo

simulation, the 3D-�PDF provides direct access to disorder models and allows

selective modelling of distinct structural features, which are, in contrast to

reciprocal space, well localized in PDF space. The principles of the 3D-�PDF

approach are exemplified using an analysis of the twofold (�8 Å) periodic

superstructure of a decagonal Al65Cu20Co15 quasicrystal. Although analysis of

disorder in quasicrystals is far more demanding than in the case of periodic

structures, details of the disordered structure could be elucidated. The

superstructure is found to be built from columnar units, having a maximum

diameter of �14.5 Å. The lateral correlation between these columns is weak.

Internally, the columns consist of a long-range-ordered alternation of flat and

puckered layers. The development of the model and the atomic structure of the

columns are described in detail.

1. Introduction

Crystals are defined as long-range-ordered objects, which are

uniformly built up from unit cells, each identical to one

another. Real crystals, however, do not fulfil the concept of

strict infinite translation symmetry, but they show a variety of

deviations like disorder and defects. For an introduction to

structural disorder and the associated diffuse scattering see

e.g. Welberry & Butler (1995), Frey (2003) and Welberry

(2004). Astonishingly, there are only a few methods for

analysis and modelling of structural disorder. In recent years,

simulation-based methods such as Monte Carlo modelling

have become popular for analysing disorder. They aim to build

real-structure computer models containing hundreds of

thousands or even millions of atoms, which are supposed to be

representative of the macroscopic crystal. Such simulations

are powerful tools, since they allow modelling of even complex

materials. However, the size of the simulated systems and the

complexity of the models require very time-consuming

computations. The relation between the Monte Carlo model

parameters and the resulting diffuse scattering is complicated;

thus establishing a satisfying model often involves numerous

trial-and-error cycles. Alternatively, diffuse scattering may be

described by analytical mathematical expressions. This

approach allows very fast computations; however, it is

restricted to relatively simple problems as mathematical

complexity increases drastically with the complexity of the

underlying problem (see e.g. Bürgi et al., 2005). The three-

dimensional pair distribution function (PDF) method

presented in this paper is intended to fill the gap between the

aforementioned approaches: it is easy to use, it is able to

analyse even complex structures, and computations are fairly

fast.

Currently, the PDF method is widely used for total scat-

tering analysis of the real structures of amorphous glasses,

liquids and disordered crystals. For an overview see e.g. Egami

& Billinge (2003), Proffen et al. (2003) and Proffen & Kim

(2009). In recent years, it has become more and more

successful in analysing the real structures of nanoparticles (e.g.

Neder & Korsunskiy, 2005; Billinge, 2008). To date, PDF
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analysis of crystallographic samples has been carried out on

the basis of powder scattering experiments. In contrast to

other crystallographic methods, periodicity is not explicitly

required for analysing a structure, which favours the method

for investigation of structural disorder. The powder PDF

describes the probability of pairs of scattering densities, like

electron densities in the case of X-rays or nuclear scattering

lengths for neutrons,1 being existent at a certain distance. It is

obtained from the Fourier transform of the experimental

powder diffraction data and can be understood as a three-

dimensional to one-dimensional angular projection of the

auto-correlation function of the real crystal. Although the

projection may lead to severe overlaps of density peaks,

information about real interatomic distances is preserved,

while information about the direction of interatomic vectors is

lost. Both overlapping of densities and loss of angular infor-

mation limit the structural interpretation noticeably, particu-

larly in the case of complex systems. To facilitate the

resolution of overlapping pair correlation maxima with similar

lengths, but possibly different angular orientations, powder

PDF analysis requires measurements up to very high diffrac-

tion angles. Moreover, a priori knowledge about the structure

is often required to avoid ambiguities. These limitations

become less severe when extending the PDF method to three

dimensions (Schaub et al., 2007). So far, the three-dimensional

PDF (3D-PDF) method has been considered to be hardly

practicable (He et al., 1993; Egami & Billinge, 2003, p. 78),

because of the huge amount of continuous three-dimensional

scattering intensity data to be collected and processed.

However, with the availability of fast computers and modern

experimental equipment, such as fast and sensitive area

detectors, characterization of disordered crystals by means of

the 3D-PDF has become feasible.

In this paper, the application of the 3D-PDF approach to a

disordered decagonal Al–Cu–Co (d-Al–Cu–Co) quasicrystal

will be demonstrated. Quasicrystals are complex aperiodic

materials, which require a higher-dimensional (nD, with n > 3)

description to allow a periodic embedding of the structure. For

a recent introduction to quasicrystals, see e.g. Steurer &

Deloudi (2009). Diffuse scattering is a common feature in

diffraction patterns of quasicrystals. Quasicrystals may show

the same types of disorder as periodic crystals (for an over-

view see e.g. Steurer & Frey, 1998): static structural disorder

phenomena, such as displacive, orientational, substitutional or

rarely glass-like disorder, are observed, as well as dynamic

disorder due to phononic excitations, which becomes manifest

in the form of thermal diffuse scattering (TDS). Other types of

disorder are specific to quasicrystals, such as phasonic disorder

producing phasonic diffuse scattering (PDS, which is equiva-

lent to TDS, but underlying displacements are along higher-

dimensional directions), quasiperiodic arrangements of

approximant domains or out-of-phase domains in higher

dimensions. Decagonal phases combine one-dimensional

periodic ordering along a tenfold axis and quasiperiodic

ordering perpendicular thereto. Although there are many

publications concerning diffuse scattering from quasicrystals,

quantitative investigations of disorder in quasicrystals are

mainly restricted to phononic and phasonic disorder described

in the framework of hydrodynamic theory (e.g. De Boissieu,

2008). Examples for investigation of structural disorder on an

atomic level are rare. Frey et al. (2000) presented a model for

twofold (�8 Å) superordering in decagonal Al–Ni–Co. Weber

et al. (2007) discussed possibilities of three-dimensional and

nD modelling concepts. Kobas et al. (2004, 2005b) modelled

disorder related to TDS and PDS in Patterson space based on

diffuse scattering in Bragg layers for d-Al–Ni–Co. There are

several reasons for the investigation of disorder in quasicrys-

tals being far more demanding than that in periodic structures.

Firstly, the average structure of quasicrystals is usually not

known to the accuracy that is nowadays standard for periodic

structures. Furthermore, the three-dimensional representation

of the average structure typically does not show quasiperiodic

repetitions of exactly the same disordered motif. Although

three-dimensional structures of quasicrystals are usually built

from a limited number of prototypic tiles or clusters, motifs

found in the three-dimensional average structures often show

a broad variety even of average representations of structural

units throughout three-dimensional space. Note that the

presence of such variants does not necessarily reflect disorder

but may be a consequence of the underlying concept of strict

quasiperiodicity. This lack of well defined average disordered

motifs complicates the use of constraints in the determination

of the real structure.

One-dimensional PDF analyses of powder samples have

been carried out for decagonal (Dubois & Janot, 1988) and

icosahedral (Hu et al., 1992; Brühne et al., 2003, 2004, 2006;

Brühne, Uhrig, Gross et al., 2005; Brühne, Uhrig, Luther et al.,

2005) quasicrystalline phases. The complexity of the structures

requires good a priori knowledge of the real structure when

using powder PDF methods. He et al. (1993) presented a two-

dimensional PDF study on a d-Al–Cu–Co single crystal. In

essence, the PDF information is one-dimensional, but by

calculating the PDF from two-dimensional diffraction layers,

they gained an additional degree of freedom in the spatial

interpretation of the PDF.

So far it is still unknown whether quasicrystals are stabilized

by energy or entropy. In the latter case, they would transform

to periodic approximant structures when approaching 0 K,

otherwise quasicrystals would be a ground state of matter.

Unfortunately, the slow kinetics of metallic structures at low

temperatures does not allow an easy experimental answer to

this question, and ab initio structure simulations suffer under

the lack of periodic boundary conditions. Investigation of

disorder in quasicrystals is therefore one of the few techniques

that allow a better understanding of the role of entropy for

stabilization of quasicrystals.

In x2, theoretical and practical aspects of 3D-PDF model-

ling methods will be outlined. In x3, the application of 3D-PDF

methods will be demonstrated using the example of the

disordered�8 Å superstructure in decagonal Al65Cu20Co15. x4
will summarize the results.
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2. Pair distribution function analysis in three-
dimensional space

2.1. Diffuse scattering and the 3D-PDF method

The electron density distribution �(r) of any disordered

crystal that has an average structure can be expressed by the

term

�ðrÞ ¼ �ðrÞ þ��ðrÞ; ð1Þ
where �(r) is the periodic electron density distribution of the

average structure and ��(r) is the difference electron density

distribution, which comprises all local deviations of the real

crystal structure relative to �(r). ��(r) is a nonperiodic infi-

nite function describing the local difference electron density

for the whole crystal structure. Similarly, within the scope of

kinematic scattering theory, the structure factor F(h) of a

disordered crystal may also be split into two components:

FðhÞ ¼ FT½�ðrÞ� ¼ FT½�ðrÞ� þ FT½��ðrÞ�
¼ FhklðhÞ þ F�ðhÞ ð2Þ

where FT[ f(x)] denotes the Fourier transform of a function

f(x) and h is a vector in reciprocal space.

The total diffraction intensity distribution is given by

ItotðhÞ ¼ FðhÞF�ðhÞ ¼ FhklðhÞ
�� ��2þ F�ðhÞ

�� ��2: ð3Þ
|Fhkl(h)|

2 is the Bragg scattering, and |F�(h)|
2 is the diffuse

scattering intensity. Diffuse and Bragg scattering sum up

incoherently, i.e. the cross terms FhklðhÞF�
�ðhÞ and F�

hklðhÞF�ðhÞ
are zero (Cowley, 1995, p. 148). Bragg scattering intensities are

sparsely distributed into sharp peaks at reciprocal lattice

points with integral coordinates hkl. For an infinitely sized

ideal (but possibly disordered) crystal, they are shaped as

Dirac � functions. On the other hand, diffuse scattering

intensities are continuously distributed throughout reciprocal

space.

Fourier transformation of the scattering intensities yields

the total scattering PDF:

PtotðrÞ ¼ FT ItotðhÞ
� � ¼ FT FhklðhÞ

�� ��2
h i

þ FT F�ðhÞ
�� ��2
h i

¼ PhklðrÞ þ P�ðrÞ; ð4Þ

with PhklðrÞ ¼ �ðrÞ � �ð�rÞ and P�ðrÞ ¼ ��ðrÞ ���ð�rÞ (�
denotes the convolution operator). Ptot can be interpreted as

the auto-correlation function of the real electron density

distribution of a crystal. Phkl is the classical crystallographic

Patterson function. When used in three-dimensional vector

space, we call Ptot the total scattering three-dimensional pair

distribution function (total scattering 3D-PDF), and P� the

3D-�PDF (Schaub et al., 2007).

2.2. The 3D-DPDF approach

Single-crystal diffraction often allows a clear separation of

Bragg and diffuse scattering, which permits us to benefit from

the properties of the 3D-�PDF described in the following.

From equation (4) one obtains

P�ðrÞ ¼ PtotðrÞ � PhklðrÞ ¼ FT ItotðhÞ � FhklðhÞ
�� ��2

h i

¼ FT F�ðhÞ
�� ��2
h i

: ð5Þ

Note that Phkl(r) and P�(r) are not as easily separable as the

corresponding diffraction intensities often are, i.e. the long-

range-ordered and the disordered contributions to the PDF

fully overlap. It is therefore most practicable to compute P�(r)
by isolating the diffuse diffraction intensities first, and subse-

quently Fourier transforming them.

An important fact that favours �PDF methods over total

scattering PDF approaches is that Bragg intensities are often

several orders of magnitude stronger than diffuse scattering

intensities. Consequently, pair correlations of Phkl are predo-

minant in the resulting total scattering PDF. Systematic and

statistical errors caused by Bragg scattering may easily amount

to a magnitude comparable to the total diffuse scattering

intensities, and thus artefacts from Bragg intensities will

significantly bias information about disorder. By removing

Bragg intensities before Fourier transformation, artefacts

originating from Bragg scattering are avoided in the PDF, and

at the same time, information about disorder becomes acces-

sible with higher reliability. In many cases, like in the study

presented in x3, separation is straightforward, because Bragg

and diffuse scattering hardly overlap. In more intricate situa-

tions the ‘punch-and-fill’ approach (Kobas et al., 2005a) may

be used.

3D-�PDF densities are proportional to the frequency of

the corresponding interatomic vectors in the real disordered

structure relative to the average structure. Hence, they allow a

direct qualitative interpretation of disorder. Positive values

show that the corresponding vectors occur more frequently

than in the average structure (positive correlation); negative

ones indicate a lowered frequency (negative correlation). In

the case of zero densities, average and real-structure correla-

tions are the same, i.e. the corresponding pairs of electron

densities are uncorrelated. As a consequence of ��(r) not

being periodic, all �PDF densities beyond a finite distance

|rmax| must be zero. Hereinafter, |rmax| will be called the

correlation length of the disorder. In PDF space, the investi-

gated volume can therefore be limited to �|rmax|, i.e. the

�PDF volume to be examined is finite. Additionally in reci-

procal space, the pixel size of the measured diffuse scattering

can be limited so as not to be considerably less than |rmax|
�1.

2.3. Impact of the experimental limitations

When average structures are investigated, Bragg scattering

intensities are integrated at the stage of data reduction over

the reciprocal space volume covered by the respective peak. If

done properly, the reciprocal-space resolution function has

therefore no influence on the structure obtained. In the case of

diffuse scattering, however, resolution-function effects cannot

be corrected easily. Sharp diffuse streaks or layers may be

integrated along the long-range-ordered direction(s) to partly

eliminate resolution effects. On the other hand, along the

disordered dimensions, the resolution function still affects the
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data and corresponding errors propagate into PDF space.

Features that are diffuse along all directions cannot be inte-

grated, and thus resolution errors fully propagate to PDF

space. Since the resolution function may vary in reciprocal

space, a simple deconvolution procedure cannot be applied to

correct for resolution effects. The influence of the experi-

mental resolution function rs(h) on PDF maps may be esti-

mated roughly (Weber & Steurer, 2009; for similar discussions

about experimental limitations in powder PDF refinements

see e.g. Toby & Egami, 1992; Qiu et al., 2004). For the sake of

simplicity, it is assumed that the properties of rs(h) are

constant. The observed diffraction pattern Iobs(h) may then be

described as

IobsðhÞ ¼ IðhÞ � rsðhÞ; ð6Þ
where I(h) denotes the scattering intensity expected from an

ideal experiment. By applying the convolution theorem one

obtains in PDF space

PobsðrÞ ¼ PðrÞRsðrÞ: ð7Þ
Rs(r) is the Fourier transform of rs(h). The resolution function

can be directly gauged from the experimental profiles of the

Bragg peaks. If rs(h) is assumed to be an isotropic Gaussian, it

can be written as

rsð hj jÞ ¼ expð�b2 hj j2Þ: ð8Þ
The full width at half-maximum (FWHM) of rs(|h|) is given by

wr ¼ ð2=bÞðln 2Þ1=2: ð9Þ
Rs(|r|) is also a Gaussian:

Rsð rj jÞ ¼ FT rsð hj jÞ� � ¼ ð�1=2=bÞ expð��2 rj j2=b2Þ

¼ �w2
r

4 ln 2

� �1=2

exp
��2 rj j2w2

r

4 ln 2

� �
ð10Þ

with a FWHM

Wr ¼
4 ln 2

�wr

: ð11Þ

This means that PDF densities become more and more atte-

nuated with increasing distance from the origin. In a typical

experimental setup with area detectors, wr is of the order of

10�3–10�2 Å�1. Consequently,Wr is of the order of 10
2–103 Å.

The effect of Rs(r) on the decay of Pobs(r) is accordingly small

for short-range correlations, but may become significant for

medium-scale correlations.

Additionally, the finite size of the experimentally accessible

reciprocal space influences the observed diffraction pattern

and thus the real-space resolution, i.e.

IobsðhÞ ¼ IðhÞ � rsðhÞ
� �

dðhÞ ð12Þ
and

PobsðrÞ ¼ PðrÞRsðrÞ
� ��DðrÞ: ð13Þ

d(h) describes the reciprocal-space volume covered by

measurement [d(h) = 1 for measured reciprocal-space areas,

d(h) = 0 elsewhere], and D(r) is its Fourier transform. If one

assumes that the radius d�max of the volume covered by d(h) is

of the order of a few Å�1, then D(r) will cause truncation

ripples in close proximity to intense PDF peaks. This effect

may be reduced by measurements including very high

diffraction angles, which is, in comparison, far more difficult

for single crystals than it is in the case of powder samples. On

the other hand, in 3D-PDF maps, the peak density is signifi-

cantly lower than in powder PDFs, because by mapping peaks

in three dimensions instead of one, the angular information

about interatomic vectors is preserved. The requirements for

resolution in three-dimensional PDF space are therefore not

so stringent. Advantageously in 3D-�PDFs, information

about ordered parts of the crystal is not visible, and hence the

peak density is further reduced.

3. Pair distribution function analysis and modelling in
three-dimensional space: decagonal Al–Cu–Co

3.1. The average structure of d-Al–Cu–Co

Decagonal Al–Cu–Co was the first stable decagonal quasi-

crystal ever observed (He et al., 1988). The structure was first

refined by Steurer & Kuo (1990) by the use of five-dimen-

sional techniques. A number of further structure models have

been published since then. For an overview see e.g. Steurer

(2004) and references therein. All these models have in

common that they only describe the �4 Å periodic average

structure, while local �8 Å ordering is unaccounted for.

Further, these models are just approximate, partly inconsistent

descriptions of the quasiperiodic structure, leaving open many

questions. For the present study, an average electron density

distribution calculated from the structural description of

Al65Cu20Co15 by Steurer & Kuo (1990) was chosen to serve as

a basic model for the average structure (Fig. 1).

As is common for decagonal phases, d-Al–Cu–Co is built up

of tenfold columnar clusters,2 which are periodic along their

unique tenfold c axis.3 Along lateral directions, the clusters are

packed with different amounts of overlap, resulting in a two-

dimensional quasiperiodic distribution normal to the cluster

axis. Geometrically, the structure may be interpreted as a

sequence of two-dimensional quasiperiodic layers, which are

stacked periodically along the c axis. The spacing between

these layers is �2 Å. From a crystal-chemical point of view,

interpretation as a layered structure, however, is inap-

propriate, as interatomic distances within and between the

layers are of the same scale. The periodicity of the average

structure of d-Al65Cu20Co15 along c is �4 Å, i.e. one period

covers two layers. Its space group was determined by Steurer

& Kuo (1990) to be P105/mmc, with periodicity c = 4.148 Å.

The existence of �8, �12 and �16 Å periodic d-Al–Cu–Co
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2 In this paper, the term cluster is solely used in the sense of geometrical
structure motifs, and not to indicate strong internal bonds.
3 In the case of decagonal quasicrystals, the unique periodic axis is usually
denoted as the a5 axis, following the five-dimensional coordinate system
a1 . . . a5. In the following, the classical crystallographic notation c axis is used
[parallel to the z direction in an orthogonal coordinate system (x, y, z)], in
order to outline that PDF analysis is carried out in three-dimensional space,
and no n-dimensional description is needed. Similarly, reciprocal-space
coordinates will be denoted by the coordinate triplet hkl instead of the five-
dimensional notation h1 . . . h5.
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phases has also been reported (He et al., 1988), but so far their

atomic structures have not been investigated.

3.2. Disorder in related decagonal and approximant
structures

Disorder and diffuse scattering in d-Al–Cu–Co has not been

investigated in detail so far, except the two-dimensional PDF

analysis by He et al. (1993) mentioned above. However,

several studies were carried out for different decagonal phases

of Al–Ni–Co, including the �8 Å periodic disordered super-

structure (e.g. Frey & Steurer, 1993; Frey et al., 2000, 2002;

Kobas et al., 2005a,b). d-Al–Ni–Co is structurally closely

related to d-Al–Cu–Co and their diffuse scattering intensity

distributions are similar [see Figs. 2 and 9 in this work and, e.g.,

Figs. 3 and 4 of Katrych & Steurer (2004)]. Thus the results for

disorder in d-Al–Ni–Co are considered to be relevant for the

�8 Å superstructure of d-Al–Cu–Co, and vice versa. Frey et al.

(2000) postulated an �8 Å superstructure of d-Al–Ni–Co that

is caused by off-plane displacements in the c direction

(‘puckering’). Cervellino et al. (2002) found that every second

layer of d-Al70.6Co6.7Ni22.7 is puckered and the others are flat.

The flat layers act as mirror planes for z displacements in the

puckered layers, resulting in a four-layer superstructure with a

period of �8 Å. This superordering is found in columnar

domains, which are long-range ordered along the c axis. In the

real structure, neighbouring clusters may be either at the same

z coordinate or displaced by �4 Å along the c direction,

leading to an average periodicity of�4 Å. Steurer et al. (2001)

have shown that the diffuse scattering in the main layers of

d-Al–Ni–Co, which represent the �4 Å periodic structure,

undergoes a different thermal evolution compared to the

diffuse interlayers, which reflect disorder of the �8 Å super-

structure. They concluded that the main and interlayers

represent different, mostly uncorrelated, types of disorder.

Kobas et al. (2005b) have shown that the diffuse scattering in

the main layers of Al70Co12Ni18 is mainly caused by phasonic

disorder, which can also be interpreted as fivefold orienta-

tional disorder of �20 Å-sized clusters. Weber et al. (2004)

investigated the thermal behaviour of the diffuse interlayers of

d-Al–Ni–Co using ‘zero-layer Patterson map’ analysis, which

is a simplified variant of the 3D-PDF method presented here.

It was shown that a columnar cluster-like arrangement with

diameter of about 15 Å is stable over a wide thermal range,

whereas formation of larger superclusters is temperature

dependent.

The presence of flat and puckered layers is also known from

periodic approximant structures to d-Al–Cu–Co. For an

overview of known approximants see Steurer (2004) and

references therein. Approximants to d-Al–Cu–Co mostly form

a monoclinic Al13Co4-type structure (Hudd & Taylor, 1962),

which is closely related to the Al13Fe4 type (Black, 1955a,b).

Other approximant structures are those of orthorhombic

Al13Co4 (Grin et al., 1994a; Fleischer et al., 2010).

3.3. Experimental and data processing

The single-crystal diffraction data of decagonal

Al65Cu20Co15 were measured at the Swiss–Norwegian beam-

line (SNBL) at the ESRF in Grenoble, France, at ambient

conditions (Scholpp, 2001). The wavelength was � = 0.70019 Å.

The oscillation range measured was ’ = 180�, with step

increments of 0.5� and an exposure time of 50 s per frame. A

Marresearch mar345 image-plate detector was used. The

crystal–detector distance was 150.0 mm. The orientation

matrix of the sample was determined using the software

package XDS (Kabsch, 1993). The period along c of the

average structure was determined to be caver = 4.11 (8) Å. The

data were reconstructed into undistorted reciprocal-space

coordinates using the softwareXcavate (Estermann & Steurer,

1998). Nineteen layers at l = �4.5, �4.0, . . . , 4.0, 4.5 were

reconstructed. Each layer had an extent of 1582 	 1582 pixels

in the orthogonal h and k directions with a pixel size of

0.0015 Å�1, thus covering a range of �1.187–1.187 Å�1

(reciprocal-space length units are defined as d�hkl ¼ 1=dhkl ¼
2 sinð�Þ=�, � being the Bragg angle, i.e. they are a factor 2�
smaller than the reciprocal-space units frequently used in

powder PDF investigations). According to the Laue symmetry

10/mmm, there are 40 possible symmetrically equivalent

orientations, which can be used for symmetry-equivalent

averaging. Since the diffraction patterns obtained from

Xcavate are mapped to an orthogonal grid, there is a mismatch

between the tenfold symmetry of the scattering intensities and

the orthogonal coordinate system of the data representation.

Thus, symmetry-equivalent averaging cannot be achieved

directly by linear transformation of one reconstructed data set.

Consequently, the scattering intensities were reconstructed

into orthogonal grids in all possible symmetrically equivalent

orientations (in total 380 layers), i.e. symmetry transformation

was done before mapping the reconstructed pattern to the

Cartesian grid. Subsequently, the beam-stop shadow was

masked, and the symmetrically equivalent data sets were

averaged.
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Figure 1
Electron density maps of the two quasiperiodic atomic layers of the
average structure of d-Al65Cu20Co15, based on structure factor ampli-
tudes and phases from Steurer & Kuo (1990). The two sections (a) and (b)
are separated by a distance of �2 Å along the periodic direction. Ring-
like structural motifs that were identified to be disordered are marked.
Mirror planes of the average structure, which are c-glide planes in the
local cluster, are highlighted (dotted lines). The edge length of each image
is 20 Å.
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Within the experimental resolution, the reciprocal space

layers are sharp along c* (Fig. 2a). In order to compensate for

experimental resolution effects and inaccuracies of the

orientation matrix, reconstructions of the layers were not

calculated as sharp cuts through reciprocal space, but inte-

grated over a thickness of �0.005 Å�1 along c*. As the

background intensities are monotone between the layers, it

can be assumed that the background within a layer can be

approximated by interpolation of the background intensities

above and below the layers. For that reason, pure background

layers were reconstructed in all symmetrically equivalent

orientations on both sides of the layers at a distance of

0.022 Å�1 (in total 760 layers) and processed in the same way

as the diffuse layers. The estimated interpolated background

intensities were then subtracted from the diffuse layers. It was

not possible to extract integrated intensities of Bragg reflec-

tions from the experimental data, because the experiment was

optimized for the measurement of diffuse intensities, and thus

most of the Bragg reflections were saturated.

As it will be explained below, diffuse intensities of the Bragg

layers were excluded from the computation of the �PDF. For

this reason, only the intensities of the ten diffuse interlayers at

l = �4.5, . . . , 4.5 were included in the further process. The

intensities of the nine main layers at l = �4.0, . . . , 4.0 were set
to zero. The 3D-�PDF (see Fig. 3) was computed using the

fast Fourier transform routines provided by the FFTW soft-

ware library (Frigo & Johnson, 2005). In contrast to the

coordinate triplet x, y and z used in real space, the coordinates

in PDF space are denoted by xP, yP and zP henceforth. Even

though the two coordinate systems have the same metric, this

notation emphasizes the different characteristics of the two

spaces. xP, yP and zP are given in Cartesian units, while ZP

represents fractional units with respect to the average �4 Å

periodicity. The computed 3D-PDF has dimensions of 1582 	
1582 	 20 pixels. The voxel size of the resulting pattern is

0.411 Å along the periodic direction and 0.421 Å perpendi-

cular thereto. This amounts to a rectangular volume with an

extent of xP = �333.2 Å, yP = �333.2 Å and zP = �4.11–

3.70 Å. As the Fourier transform is symmetry conservative,

the 3D-�PDF map has the Laue symmetry of the diffuse

scattering pattern, i.e. 10/mmm.

3.4. Observations and qualitative interpretation of diffrac-
tion patterns and DPDF maps

The single-crystal diffraction pattern of d-Al–Cu–Co (Fig. 2)

shows a sequence of layers containing Bragg and diffuse

scattering (Bragg layers) and halfway between layers with

diffuse scattering only (interlayers). The Bragg layers are

separated by a distance of 1/caver = 0.243 Å�1. Inspection of

the odd-numbered Bragg layers shows that the c-glide plane

symmetry required by the space group P105/mmc as proposed

by Steurer & Kuo (1990) is weakly broken. From the beha-

viour of the extinction rule-violating reflections (i.e. symmetry

and profiles) it is not expected that this is an artefact from

Umweganregung. The presence of interlayers indicates that

the periodicity of the real structure is twice the average

translation, i.e. creal = 8.23 Å. Along c* interlayers are as sharp

as Bragg reflections, and consequently, the underlying disor-

dered motif is long-range ordered along the periodic direction

and short-range ordered along quasiperiodic directions. A set

of five extinction zones, which were already reported in

selected-area electron diffraction patterns by Saitoh et al.

(1996), is observable in all interlayers (Figs. 2c and 9). As these

extinction zones cannot be found in the Bragg layers, the

presence of local c-glide plane symmetry with respect to the

�8 Å superstructure can be assumed. Note that these local

c-glide planes are not identical to those of space group P105/

mmc of the average structure.

Diffuse scattering present in the Bragg layers is not

considered in the following investigations. We know from

d-Al–Ni–Co that it is most probably caused by phasonic

disorder, which is not correlated with disorder of the �8 Å

superstructure (Kobas et al., 2005b; Weber et al., 2007). Simi-

larity of the diffuse diffraction patterns of d-Al–Ni–Co and

d-Al–Cu–Co corroborates this supposition also in the present

case. This assumption is further supported by the observation
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Figure 2
Experimental X-ray diffraction pattern of Al65Cu20Co15. (a) Section including the periodic axis c*. Between the Bragg layers at integral positions of l,
weaker diffuse interlayers are present. (b) Main layer at l = 0.0, containing Bragg and diffuse intensities. (c) Diffuse interlayer at l = 0.5. Arrows mark
tenfold extinction zones (see text). Images (b) and (c) are symmetry averaged, and background intensities were removed.
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that the appearance of diffuse scattering in Bragg layers of

d-Al–Cu–Co differs clearly from the diffuse intensities in the

interlayers (cf. Fig. 2).

The diffraction data set is a discrete real even function, i.e.

I(h) = I(�h). Consequently, Fourier transformation can be

reduced to a real discrete cosine transform (DCT). By the use

of diffraction intensities from interlayers only [l = (2n + 1)/2, n

is an integer], which represent information about the �8 Å

disorder, the 3D-�PDF is calculated as

P�ðxP; yP;ZPÞ ¼ 2
P

n
0

P

h;k

�
I h; k; ð2nþ 1Þ=2½ �

	 cos 2�ðhxP þ kyPÞ
� �

cos �ð2nþ 1ÞZP

� ��
: ð14Þ

The term cos[�(2n + 1)ZP] is +1 for all even integral values of

ZP and �1 for all odd-numbered integral ZP. At half-integer

ZP positions, the term is zero. Accordingly, the 3D-�PDF has

mirror planes at integral ZP (i.e. at zP ’ . . . , �4, 0, 4, . . . Å)

and anti-mirror planes halfway in between (zP ’ . . . , �6, �2,

2, 6, . . . Å) (cf. Fig. 4d). In the anti-mirror planes, the �PDF

density must be zero, i.e. the interatomic correlations of the

real structure over distances zP = (2n + 1)caver/2 are identical

to those found in the average structure. Symmetry consid-

erations allow us to restrict our attention to 0 � ZP � 0.5

(0 � zP � �2 Å). According to the zP voxel size, this includes

the layers at zP = 0.00, 0.41, 0.82, 1.23, 1.65 and 2.06 Å (Fig. 3).

Strong correlation densities up to distances of about 14.5 Å

away from the central axis are found in (xP, yP) layers at

zP = 0.00, 0.82 and 1.65 Å. Beyond this circular region, only

weak correlations are observed (Fig. 3) up to radial distances

of about 100 Å, which will be neglected in the following.

Consequently, the considered maximum correlation length

(perpendicular to the cluster axis) for the interpretation of the

disordered structure is about 14.5 Å. Layers at zP = 0.41 and

1.23 Å show throughout very weak densities. The layer at

zP = 2.06 Å shows only zero densities, as expected from

equation (14).

Geometrically, d-Al–Cu–Co can be seen as a layered

structure, which is also reflected in the PDF space properties.

Features in the PDF maps can be easily assigned to intralayer

and interlayer vectors by considering their zP components. If a

four-layer periodic alternating sequence of puckered and flat

layers and a constant puckering amplitude �z for all atoms in

the puckered layers is premised, intralayer disorder within flat

layers occurs at zP = 0.00 Å only, while intralayer disorder

within puckered layers is found in the layers at zP = 0.00 Å and

zP = 2�z (cf. Fig. 4). The splitting of the last-mentioned

correlation vectors is due to atom pairs that show parallel or

antiparallel off-plane displacements, respectively. Correlations

between next neighbouring flat and puckered layers are

observed in the layers at creal/4 ��z and creal/4 +�z (creal/4 is

the distance between two layers). It is important that the layer
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Figure 3
Two-dimensional (xP, yP) sections at different zP of the 3D-�PDF of d-Al65Cu20Co15, computed from single-crystal X-ray diffuse scattering. Positive
correlations are in white and negative ones in black. The centre of the sections is at xP = yP = 0. The images cover �35.17 Å along each axis. As a
reference, a circular arc with a radius of 14.5 Å is drawn in each image, corresponding to the considered maximum correlation length used for modelling.
Note that the section at zP = 2.06 Å contains only zero values and is not shown here.
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at zP = 2�z contains exclusively information about puckered

but no information about flat layers, provided that creal/4��z

is significantly different from 2�z, i.e. in the case of d-Al–Cu–

Co �z << �0.69 Å. From approximant structures it is known

that puckering amplitudes are typically of the order of less

than 0.4 Å. In the experimental �PDF maps, there are strong

density peaks in the layer at zP = 0.82 Å. These are an indi-

cation that this layer represents information about disorder in

the puckered layers, with an average puckering amplitude of

roughly 0.82 Å/2 ’ 0.4 Å. When comparing the layer at

zP = 0.82 Å with that at zP = 0.00 Å (Fig. 3), one recognizes

that the main peaks of the 0.82 Å layer also occur in the 0.00 Å

layer, but their signs are inverted. The opposite is not the case,

i.e. there are features in the 0.00 Å layer that are not observed

in the 0.82 Å layer. This complimentary behaviour can be

easily explained (cf. also Fig. 4): in contrast to the average

structure, a given atomic pair in the real puckered layer can

only show parallel or antiparallel out-of-plane displacements,

but never both at the same time. For given xP and yP coordi-

nates, preference for parallel displacements leads accordingly

to positive peaks at zP = 0.00 Å and negative peaks at

zP = 0.82 Å. In the case of antiparallel displacements the

behaviour is inverse. In particular, the pattern in the 0.00 Å

layer is expected to be the negative of the pattern in the 0.82 Å

layer if solely information about the puckered layers is

considered. Any deviations therefrom must hence be due to

disorder in the flat layer.

Given a puckering amplitude of �z ’ 0.4 Å, correlations

between disordered atom positions in puckered and in flat

layers are expected to be found at zP = creal/4 � �z, as well as

in symmetrically equivalent layers. This explains the presence

of strong densities in the corresponding experimental �PDF

layer at zP = 1.65 Å (Fig. 3).

The influence of the experimental resolution function rs(r)
on the PDF density was calculated from profiles of unsatu-

rated Bragg peaks [equation (10)]. The estimated average

FWHM of the Bragg peaks, wr, along quasiperiodic directions

is about 0.006 Å�1. Consequently, the attenuation of PDF

densities 14.5 Å apart from the tenfold axis is about 3%, which

was considered to be negligible. As the experimental diffuse

layers were integrated along c*, the experimental resolution

has no effect on the �PDF densities in directions along c.

3.5. Modelling

Based on the qualitative interpretation of the experimental

data and considering the analogy to �8 Å structure models in

d-Al–Ni–Co and approximant structures, it is concluded that

the disorder has its origin in columnar clusters with a diameter

of �14.5 Å. For the sake of simplicity, the occurrence of one

single prototypic cluster type is premised. Within this

columnar motif, an alternating sequence of flat and puckered

layers is assumed. The cluster may randomly occupy one of

two possible positions separated by a shift distance of

caver ’ 4 Å along the periodic direction. Internally, the model

structure of the clusters is perfectly ordered, i.e. all columns

incorporate an identical pair correlation distribution. Since

the weak �PDF densities more than �14.5 Å away from the

tenfold axis are ignored, also all correlations between dis-

placements of laterally adjoining clusters are neglected.
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Figure 4
Schematic description of structural disorder by columnar units, as found
in d-Al–Cu–Co. (a) Columnar, laterally uncorrelated, real structure
motifs shifted by creal/2 relative to each other. Full circles indicate
occupied atom positions. Within each column, there is an alternating
sequence of puckered layers with off-plane shifts of ��z, and of flat
layers with in-plane shifts. Glide-plane symmetry (dashed lines) along c
and mirror symmetry perpendicular thereto (solid black lines) in the flat
layers effect a local periodicity of creal = 2caver . (b) Average structure of
the disordered structure shown in (a). Grey circles indicate half-occupied
atomic sites. Superposition of the two shifted columns reduces the period
to caver, transforms the c-glide plane to a mirror plane and causes new
mirror planes in the puckered layers. The symmetry of (b) is a supergroup
of (a). (c) Difference structure of (a) and (b), i.e. ��(r) = �real(r) � �(r).
Full circles indicate positively half-occupied difference atom positions;
dashed circles indicate negatively half-occupied ones. Selected inter-
atomic vectors from one arbitrarily chosen positive difference atom in a
puckered layer to atoms in the same layer (green) and adjacent flat layers
(blue) are marked. Solid lines indicate positive correlation; dashed lines
show negative correlation. (d) The�PDF resulting from (c). Positive pair
correlations are marked with open circles; negative pair correlations are
marked with solid circles. Green: pair correlations between atoms in
puckered layers; blue: puckered–flat correlations; red: flat–flat correla-
tions. The interatomic vectors as shown in (c) are marked in the same
colours; their symmetric equivalents are marked in black. m and m0

indicate mirror and anti-mirror planes (see text), respectively. As the
structure is long-range ordered in the c direction, the PDF is also periodic
in this direction with period 2caver. Note that, for symmetry reasons, both
in-plane and correlated off-plane shifts are required to generate a�PDF
that contains nonzero intra- and interlayer densities.
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Furthermore, it is assumed that the clusters occupy the two

possible z positions with the same probability. For such a

model the diffuse scattering intensities can be easily calculated

as (cf. Weber et al., 2001)

IdiffuseðhÞ / FT �ClðrÞ � �Cl0 ðrÞ
� ��� ��2¼ fClðhÞ � fCl0 ðhÞ

�� ��2; ð15Þ
where fCl(h) and fCl0(h) are the Fourier transforms of the

cluster electron density �Cl(r) and its variant �Cl0(r) shifted by

caver, respectively. Accordingly, equation (15) can be rewritten

as (remember that l refers to the average structure)

IdiffuseðhÞ / fClðhÞ � fClðhÞ expð2�ilÞ
�� ��2

¼ 2fClðhÞf �ClðhÞ 1� cosð2�lÞ½ �: ð16Þ
Diffuse intensities from this model are extinct in all Bragg

layers but the interlayers show a maximum intensity 4fCl f
�
Cl.

Note that there is only a contribution to Idiffuse(h) when

�Cl(r) 6¼ �Cl0(r), i.e. nondisordered parts of the structure do not
have to be part of the model. Note further that the diffuse

intensity of this model only depends on the internal structure,

but not on the spatial distribution of the clusters in the crystal.

This drastically simplifies further investigations, because the

spatial quasiperiodic arrangement of the clusters and the

relationship between clusters do not have to be modelled or

even to be known, and disorder can be characterized just by an

atomic model for the disordered part of the �14.5 Å cluster.

Owing to extinctions in the diffuse interlayers, additional local

c-glide planes, which are not part of the average structure, are

expected to be present in the disordered structure. Their

translation component is creal/2 = caver, i.e. atoms lying exactly

on such a c-glide plane are invariant with respect to the �4 Å

displacements. Such atoms do not contribute to scattering in

interlayers, and they do not have any influence on the calcu-

lation of the �PDF maps. Diffuse scattering intensities were

calculated on a grid that has the same properties as the grid

representing the experimental diffuse scattering. Before

Fourier transformation, the simulated diffuse intensities were

multiplied with a mask function having unit weights at reci-

procal space positions, where experimental diffraction data

were available, and zero values elsewhere. This guarantees

that truncation effects in experimental and modelled �PDF

maps are the same.

A candidate for the demanded �14.5 Å cluster is found in

the average electron density calculated from the structure

model reported by Steurer & Kuo (1990), as shown in Fig. 1.

To test both the model developed so far and the applicability

of this cluster model, we first tried to reproduce the �PDF

map of the layer at zP = 0.82 Å, i.e. to model disorder in the

puckered layers. Because of the limitations of their average

structure model, reliable information about off-plane dis-

placements was not available from Steurer & Kuo (1990).

Accordingly, the displaced atoms had to be identified from the

experimental �PDFs. By comparison of the interatomic

vectors of two tenfold rings with radii rpi = 4.64 Å and rpo =

7.51 Å (Fig. 1a) with the �PDF map at zP = 0.82 Å, these

vectors could be associated with alternating positive and

negative �PDF peaks (Fig. 5). Remember that positive

correlations in the 0.82 Å �PDF layer mean that atoms

connected by a corresponding vector prefer opposite off-plane

displacements, while negative peaks indicate that relevant

atoms tend to be on the same side of the puckered layer.

Hence, the �PDF map may be understood by supposing that

all tangentially and radially next neighbouring atoms of the

two rings prefer antiparallel z displacements. The �PDF of

this initial model was calculated as explained above, under the

assumption that the puckering amplitude is 0.4 Å for all atoms.

The radii of the rings from the centre of the cluster were

estimated from the average structure as r1 = 4.64 Å and

r2 = 7.51 Å. All atomic sites were decorated with Al atoms.

Other atoms of the puckered layers in the surroundings were

assumed to be ordered, because they all lie on c-glide planes

(Fig. 1).

The resulting diffraction pattern and �PDF of this initial

model are shown in Fig. 6. Although the model is very simple,

it nicely reproduces the �PDF of the layer at zP = 0.82 Å and

major parts of the layer at zP = 0.00 Å. The most obvious

difference between observed and calculated densities in the

0.00 and 0.82 Å layers is that the experimental densities decay

more rapidly with increasing distance from the tenfold axis

than is the case in the modelled pattern. The 0.00 Å layer

shows some features that are not covered by the model,

because disorder of flat layers was not considered at this point.

For the same reason, the layer at zP = 1.65 Å, which reflects

the correlations between puckered and flat layers, is practi-

cally featureless. From the good agreement between experi-

mental and modelled �PDF layers at zP = 0.82 Å, it can be

concluded that the structural motif highlighted in Fig. 1 is most

probably the disordered object of interest, and that a

reasonable model for describing the puckering was found.

Note that such conclusions, drawn from comparison of
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Figure 5
Comparison of the 3D-�PDF at zP = 0.82 Å and the electron density of
the average-structure solution on the same scale. In each image, an
identical group of interatomic vectors with a vertical component
�z ’ 0.82 Å is drawn. The colour of the arrows corresponds to the
sign of the �PDF density linked with the respective vector, i.e. white
coloured arrows indicate positive pair correlation and black coloured
arrows negative. In the electron density map, the vectors point from an
appropriate atom on the inner ten-membered ring (cf. Fig. 1a) to its
neighbours on the same and on the surrounding outer ring. The sequence
of alternating signs of pair correlations (as seen from the origin atom,
marked with white and grey dotted circles) indicates a puckered
arrangement of the respective atoms by �z in the disordered real
structure. Mirror symmetry of the average structure is replaced by local
glide plane symmetry in the real structure (dotted lines, cf. Fig. 1a).
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experimental and modelled �PDF maps, cannot be obtained

facilely from corresponding diffuse scattering patterns (Fig. 6).

The reciprocal space agreement between experiment and

intensities from incomplete models is, generally, very low and

does not allow conclusions about the quality of such partial

models.

As the cluster is a three-dimensional object with one-

dimensional periodicity, its symmetry can be described by a

rod group. In accordance with the electron density shown in

Fig. 1, the rod group of the average cluster is assumed to be

p102m, while the symmetry of the real cluster has to be a

subgroup thereof. Group p102c is a proper subgroup that is

consistent not only with the diffuse scattering extinction rules

but also with the condition creal = 2caver, as well as with the

symmetry of the puckered layer model discussed above. In the

following, it was therefore accepted as the symmetry of the

real cluster model.

The next step was to complete the disordered structural

motif by modelling the flat layers. From the average structure

model, the most obvious candidates for representing disorder

in flat layers are the tenfold ring of split atoms at a radius of

rfo = 6.10 Å, having unphysical short interatomic distances in

the average structure, and the smaller ten-membered ring with

a radius of rfi = 3.93 Å (Fig. 1b). Efforts were made to

reproduce at least some parts of the zP = 1.65 Å�PDF pattern

and of the missing features in the zP = 0.00 Å map by corre-

lating disorder in puckered layers with disorder in the split

positions of the flat layers. The models were restrained such

that (i) the atoms in the real structure were close to the

positions in Fig. 1(b), (ii) atoms lying on c-glide planes in

Fig. 1(b) were not considered and (iii) rod-group symmetry

p102c was fulfilled. The model of disorder in the puckered

layers was left unchanged at this stage of modelling. None of

these attempts, however, improved the agreement with the

experimental �PDF. After several trial-and-error attempts, a

convincing model was obtained by dropping constraint (i), i.e.

split atoms were allowed to move in a distance range

comparable to the shifts found in the puckered layers away

from the initial positions, and by releasing restraint (ii), i.e.

atoms lying on a c-glide plane were allowed to move away

from the planes and thus to contribute to the diffuse scattering

and to the �PDF maps. Atoms on the small pentagonal motif

(r = 1.63 Å) in the centre of the flat rings were not allowed to

move away from the c-glide plane, because limited space in

this area would not allow a reasonable arrangement of these

atoms in consideration of the given rod group. The origin of

this motif is possibly phasonic disorder that is not related to

superstructure disorder.

With the assumed rod-group symmetry of the real structure,

off-plane disorder in the flat layers is not possible, because the
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Figure 6
(a) Comparison of the experimental and modelled 3D-�PDF of d-Al65Cu20Co15. The underlying incomplete structural �8 Å model of disorder contains
only two puckered layers, centred at z = 0 and z = creal/2. The model does not cover the�PDF densities at zP = 1.65 Å; the observable weak densities in
that section are due to truncation effects. The area covered by each image is �21.27 Å along each axis. The colouring scheme is the same as in Fig. 3. (b)
Corresponding diffuse scattering intensities in two diffuse interlayers of the partial structural model. The diffraction pattern of the model structure shows
a strong variation of intensity in different layers. Image sizes are the same as in Fig. 9.
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mirror plane lying in these layers would cause the interatomic

distances in the real cluster to be too short. The same mirror

planes are also responsible for the fact that in-plane disorder

in the puckered layers is not considered in our models. Any

atom having no off-plane displacement would be transformed

to an equivalent atom with same x, y coordinates and z = ncaver.

As a consequence, it would not be disordered with regard to

the �4 Å shifts discussed in this study.

The question about the elemental decoration of the atomic

sites has not been addressed so far. As mentioned above, the

average structure of quasicrystals is usually not as accurately

known as is the case for periodic structures. Correlations

between occupation factors of elements and displacement

parameters, as well as shortcomings of the refined average

model, often do not allow a precise definition of the distri-

bution of elements in the average structure. Because of this

lack of information, correct assignment of elements to atomic

sites is even more complicated when modelling the real

structure. On the other hand, differences in the scattering

power between Al and transition metals (TMs) must be

addressed in a quantitative refinement. To overcome this

problem, all atomic sites were considered to be occupied by

the same element (Al), but the local scattering power of a

specific site was accounted for by multiplying it with a

weighting factor to be refined.

The observation that �PDF densities in the experimental

pattern decay much more quickly than those in the simulated

maps (see Fig. 6) was considered by multiplying the modelled

�PDF map by a cylindrical exponential attenuation function

tðrPÞ ¼ expf�½ðaxPÞ2 þ ðayPÞ2�1=2g, having one refinable para-

meter, a. If a becomes significantly larger than zero, it must be

concluded that the initial assumption of clusters having perfect

internal lateral order is not correct, because intra-cluster

disorder leads to a more rapid decay of atomic correlations

than in the case of perfectly ordered clusters. In addition, any

modelling of phononic disorder was discarded.

3.6. Refinement, results and discussion

In order to obtain a best fit between experimental and

calculated �PDF patterns, the numerical parameter values of

the model were optimized using the differential evolution

method (Storn & Price, 1997). The agreement between

experimental and calculated �PDF maps was quantified by a

reliability factor comparing the �PDFs voxel by voxel:

R ¼
P

wi �Pobs
i � s�Pcalc

i

� 	2

P
wi �Pobs

i

� 	2

" #1=2

: ð17Þ

The scaling factor s was determined by a linear least-squares

fit prior to computation of R. The weighting factor wi was used

to restrict the computation of the R value to the regions of

interest, i.e. to voxels having a distance less than 16.6 Å away

from the tenfold axis. Voxels within this volume were given

unit weights; otherwise the weights were set to zero.

After initial refinements, it turned out that only one of the

two fivefold atomic orbits of the inner ring in the flat layers

deviated significantly from the c-glide planes. For the atoms on

the other orbit either they stayed close to the c-glide plane or

the scattering weighting factor refined to very small values. In

both cases corresponding atoms would not significantly

contribute to the �PDF maps, and therefore they were not

included in further refinements.

To account for the columnar shape of the structural model,

a cylindrical coordinate system (z, r, �) was used to describe

the cluster’s geometry. Coordinates and a scattering weighting

factor were refined for each symmetrically independent atom

position. For definitions of the free parameters used in model

optimization see Table 1 and Fig. 7. The z coordinates of atoms

in the flat layers were not refined but were constrained to the
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Figure 7
Single atomic layers in projection parallel to c of the optimized �8 Å
real-structure motif of d-Al65Cu20Co15, showing definitions of the free
parameters optimized in the refinement as well as a possible atomic
decoration. Blue: atoms in flat layers; red: atoms in puckered layers;
atoms displaced in the positive c direction are shown with a ‘beachball’
pattern; all other atoms in the puckered layers are displaced in the
negative c direction. The proposed chemical decoration of the disordered
structural motif is illustrated with small atoms on Al-dominated sites and
large atoms on mixed TM/Al sites. For discussion see text. Parameter
names and abbreviations are explained in Table 1.
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ideal position on the flat plane. To avoid correlations with the

scale factor, the scattering weighting factor of one arbitrarily

selected site was set to unity (see Table 1). No further

constraints apart from the symmetry of the rod group p102c

were applied. Including a global scale factor, the model had 18

parameters to be optimized.

The evolutionary optimization of the final model was run

with a population size of 150 individuals. The crossover and
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Table 1
Free model parameters, their optimized values and value intervals used for differential evolution optimization.

IPR – inner puckered ring; OPR – outer puckered ring; IFR – inner flat ring; OFR – outer flat ring. For further definitions of the parameters see Fig. 7.

Parameter Description Permitted interval Start interval Optimized value

rpi Radius of IPR 4.00–5.25 Å 4.50–5.00 Å 4.80 Å
rpo Radius of OPR 6.50–7.75 Å 7.00–7.50 Å 7.39 Å
�zpi Vertical out-of-plane shift (puckering amplitude) of IPR 0.082–0.457 Å 0.185–0.411 Å 0.208 Å
�zpo Vertical out-of-plane shift (puckering amplitude) of OPR 0.082–0.457 Å 0.185–0.411 Å 0.368 Å
�pi Angular offset of atom positions on IPR, relative to mean positions at 18�, 54�, 90�, . . . �4.00–4.00� �2.50–2.50� �1.46�

�po Angular offset of atom positions on OPR, relative to mean positions at 18�, 54�, 90�, . . . �4.00–4.00� �2.50–2.50� �0.29�

rfo1 Radius of OFR – inward-shifted positions 4.75–6.50 Å 5.00–6.30 Å 5.41 Å
rfo2 Radius of OFR – outward-shifted positions 4.75–7.80 Å 5.10–7.30 Å 6.36 Å
�fo1 Angular offset of inward-shifted atom positions on OFR, relative to mean positions at

18�, 54�, 90�, . . .
0.00–12.00� 0.00–11.00� 9.86�

�fo2 Angular offset of outward-shifted atom positions on OFR, relative to mean positions at
18�, 54�, 90�, . . .

�12.00–12.00� �11.00–11.00� �2.67�

rfi Radius of IFR 3.30–4.50 Å 3.40–4.20 Å 3.87 Å
�fi Angular offset of atom positions on IFR, relative to mean positions at 0�, 72�, 144�, . . . �8.00–8.00� �7.00–7.00� �5.29�

a Exponential decay 0.000–0.237 Å�1 0.012–0.119 Å�1 0.059 Å�1

opo Scattering weighting factor of OPR relative to ofo1 0.000–2.500 0.050–2.000 0.712
ofo2 Scattering weighting factor of OFR (first fivefold sub-ring, outward-shifted) 0.000–2.500 0.750–1.250 1.259
ofo1 Scattering weighting factor of OFR (second fivefold sub-ring, inward-shifted) – fixed to 1 1.000 1.000 –
opi Scattering weighting factor of IPR relative to ofo1 0.000–2.500 0.050–2.000 1.284
ofi Scattering weighting factor of IFR relative to ofo1 0.000–2.500 0.050–2.000 1.297

Figure 8
Comparison of the experimental and the optimized modelled 3D-�PDF of d-Al65Cu20Co15. In the lower-left quadrant of each image, the difference
between the experimental and the modelled 3D-�PDF is shown. Positive differences (�PDFexp > �PDFmodel) are white; negative differences
(�PDFexp < �PDFmodel) are black. The area covered by each image is �21.27 Å along each axis. The colouring scheme of the experimental and
modelled �PDF is the same as in Fig. 3.
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the mutation constant were both set to 0.7 (see Weber &

Bürgi, 2002, for definitions). The computations were

performed on an Apple Macintosh cluster equipped with 11

1.8 GHz and 20 2.0 GHz CPUs. The best individual was found

after about 1400 generations, and the whole population

converged to this individual representation after about 2000

generations. The summed total computation time of all

processors was about 160 d; this equals a wall time of about

5 d. The optimized parameter values are listed in Table 1. The

residual value for the best individual was R = 0.300. Good

agreements are found between the experimental and

modelled �PDF and diffuse scattering maps (Figs. 8 and 9).

The differences between the experimental and the modelled

�PDF densities within the volume covered by the model are

of the same magnitude as the correlation densities with hori-

zontal lengths >14.5 Å. Hence, the assumption that inter-

cluster correlations are significantly weaker than intra-cluster

correlations could be confirmed.

Compared to conventional average-structure least-squares

refinements, the value of R of the final result seems to be

rather high. This may be explained by the fact that diffuse-

scattering-based refinements in general yield higher R values

than Bragg-scattering-based refinements, because of an

usually lower quality of the experimental data. The weaker

intensity of diffuse scattering is responsible for stronger

contributions of statistical errors, and furthermore, demanding

data processing procedures favour introduction of systematic

errors. For these reasons, diffuse-scattering-based refinements

of extended reciprocal space volumes do rarely yield R values

below 0.15. Such errors also propagate into the PDF and

�PDF. Additional problems are specific to quasicrystals. The

refined model presented here is in fact a simplified repre-

sentation of reality. The model assumes the presence of only

one prototypic real cluster and one resulting average cluster.

As mentioned above, quasicrystals may, however, show a large

number of variants even for the average cluster, let alone for

the real clusters. Such a simplified model

certainly increases the lowest possible R.

The optimized model describes a structural

motif that is representative for idealized local

disorder in d-Al–Cu–Co. The atomic structure of

the final model is shown in Figs. 7 and 10 and

Table 1. The prior model of the puckered layers

developed from qualitative considerations could

be confirmed. The refined values of rpi = 4.80 Å

and rpo = 7.39 Å are close to the distances found

by Steurer & Kuo (1990) (4.64 and 7.51 Å,

respectively; see Fig. 1a). The puckering ampli-

tude in the outer ring (�zpo = 0.368 Å) is larger

than that of the inner ring (�zpi = 0.208 Å).

Both values are comparable to maximum puck-

ering amplitudes found in approximant struc-

tures [e.g. 0.299 Å in orthorhombic Al13Co4
(Grin et al., 1994a), 0.345 Å in monoclinic

Al13Co4 (Hudd & Taylor, 1962) and 0.354 Å in

Al13Fe4 (Grin et al., 1994b)].

Atoms in the ring of split positions in the flat

layer (referred to as the outer flat ring hence-

forward) moved significantly away from the

positions shown in Fig. 1(b). After refinement,

the radii of the two orbits of this ring are no

longer the same [5.41 and 6.36 Å, compared to

6.10 Å in the average structure of Steurer & Kuo

(1990)], and the cylindrical � coordinate is

somewhat different from that in the average

model [9.86 and 2.67�, compared to 4.6�). The
atoms in the inner flat ring refined to a radius of

3.87 Å (3.93 Å in the average structure) and a

deviation from the glide plane of 5.29�

(compared to 0.0�), i.e. 0.36 Å. The interatomic

distances between the disordered atoms are

reasonable (Fig. 10). Next neighbouring atoms

have a separation of between 2.36 and 2.84 Å,

which are typical values for Al–TM compounds.

The distances between disordered and ordered
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Figure 9
Comparison of experimental and modelled diffuse X-ray scattering intensities in the
interlayers of d-Al65Cu20Co15.
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atoms lying in the regime of the clusters must be estimated (cf.

Fig. 1), since the latter were not considered in the model. Most

atom positions of the average structure in the environment of

the proposed structural motif have reasonable distances to the

disordered positions, or, if necessary, slight shifts of the

respective atom positions are sufficient to avoid conflicts.

The refined decay parameter a = 0.059 Å�1 dampens the

model PDF densities to 43% at a radial distance of 14.5 Å, i.e.

the clusters show a significant amount of internal disorder. The

refined scattering weighting factors of the disordered rings

follow a downward trend with increasing radius of the atomic

rings (see Table 1). As the scattering weighting factors are

proportional to the contributions of each ring to the total pair

correlations contained in the �PDF, one could hope that the

refined values would give an indication about the distribution

of the elements among the atomic sites. This is, however, not

the case, as the refined scattering weighting factors are not

only proportional to the scattering power of the elements but

may also be correlated with the strength of pair correlations.

The exponential attenuation function t(rP) is a very simple

model for addressing intra-cluster disorder. The decrease of

scattering weighting factors with increasing distance from the

cluster axis may, for instance, be a consequence of a situation

where atoms become more affected by intra-cluster disorder

the farther away they are from the cluster axis. This kind of

disorder could at least partly be compensated for by attri-

buting a lower scattering power to such atoms. It is also

expected that the scattering weighting factors compensate for

other shortcomings of the model. These uncertainties could

only be resolved if the average structure were precisely

known, in order to allow application of reliable constraints to

the atomic occupation factors.

As the refined scattering weighting factors cannot be

directly used to determine the distribution of the elements,

analysis of interatomic distances may give a more precise

picture. Based on the experience that the smallest Al—Al

distances are typically 0.2–0.3 Å longer than the smallest Al—

TM or TM—TM distances, it may be assumed that the outer

puckered ring and the inward-shifted positions of the outer

flat ring are preferably occupied by Al and the others by TMs

(Fig. 7). The shortest Al—Al distance of this model would be

2.84 Å, and the composition of this motif is Al3TM4, provided

that there is a strict separation into Al and TM sites. However,

the interatomic distances allow facilely inserting more Al into

the hitherto pure TM sites. Also by comparison to average

structure models from the literature (see below, as well as

Fig. 11) a wide scope of mixed occupations is found. Thus, the

composition of the disordered motif may be close to the

average bulk composition Al6.5TM3.5. Although of limited

decisive power, the refined scattering power factors fit well to

this proposed decoration, as the factors of the two Al-domi-

nated rings are clearly smaller than those of the TM-domi-

nated ones.

The presented structural motif is chiral. By applying an

inversion transformation, a second enantiomorphic repre-

sentation of the structural motif can be obtained. The two

�PDFs are identical. Hence, from �PDF analysis, as well as

from the uncertain average structure solution, it cannot be

determined how the two chiral forms of the motif are

distributed in the real quasicrystal structure.

The structural models of d-Al–Cu–Co published so far do

not consider the �8 Å superstructure, but only the �4 Å

average structure. It is beyond the scope of this study to

reinterpret the structure and structural models of d-Al–Cu–

Co. The presented structural motif covers only a part of the

complete structure, thus neither is it congruent with the

structural clusters found in the literature nor has it the char-
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Figure 10
The optimized �8 Å real-structure motif and the average structure
resulting from superposition of two disordered motifs shifted by �4 Å
along c. The colours of the atoms are the same as in Fig. 7. Locally existing
atoms of one real-structure representation of the disordered motif are
shown as rendered balls; locally vacant atom sites of the average structure
are shown as striped circles. For the�4 Å-shifted real-structure motif, the
rendered/striped representations would be inverse. Interatomic distances
in the disordered structural motif shorter than 3 Å are labelled. Dashed
lines: intralayer distances in flat layers; dotted lines: intralayer distances
in puckered layers; solid lines: interlayer distances. (a) Projection parallel
to c. In the topmost puckered layer, the locally vacant atoms sites are not
shown, in order not to hide the downwards-shifted occupied ones. (b)
View perpendicular to c onto an�8 Åunit of the same cluster as shown in
(a).
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acter of a structural tile. However, its average representation

can be localized in other atomic structures, as was exemplarily

shown in the structure solution of Steurer & Kuo (1990). A

localization of the disordered structural motif in the super-

cluster of Deloudi (2008) is shown in Fig. 11. This model,

which is based on experimental data, is the most recent

description available of the d-Al–Cu–Co structure. The model

of disorder proposed here is consistent with the average-

structure model of Deloudi (2008). However, it becomes

obvious that there are a wide range of variations in decorating

the atom positions with the elements.

4. Summary and conclusions

The 3D-�PDF method was shown to be a powerful tool for

understanding disorder in complex structures. Unlike reci-

procal space, PDF space is isometric to real space, i.e. PDF

densities may be directly linked to structural features. This

allows a direct interpretation of interatomic correlations and

selective modelling of structural features. The power of the

�PDF approach was clearly demonstrated on the example of

analysing puckering in clusters of d-Al65Cu20Co15. The possi-

bility of selective modelling in PDF space allowed a straight-

forward development of a puckered layer model without

including any knowledge about the flat layers. By employing

this special feature of PDF modelling, the complexity of

modelling could be reduced significantly. After the model for

the puckered layers was identified, parts of the �PDF that

were not covered by the model could be clearly recognized

and addressed in the next steps. This finally resulted in a

satisfying model taking into account flat and puckered layers.

In reciprocal space, on the other hand, the agreement between

experimental diffuse scattering and intensities calculated from

the first intermediate model was too poor (Fig. 6) to allow

differentiation between well fitting, partially fitting and

missing features of the intermediate model. In particular, in

the case of quasicrystals, it is advantageous to accomplish

modelling of local disorder independently of the long-range-

ordered properties of clusters. In the present case, it was not

even necessary to know about the existence of an underlying

quasiperiodic lattice when modelling the atomic structure of

the clusters.

A prerequisite for using the �PDF approach is that the

average structure must be known. A precise knowledge helps

to explain the �PDF map as it provides useful constraints for

the real structure. In the case of unreliable average structure

models, as in the case of the present study, the �PDF method

may still be applied, but shortcomings in the analysis of Bragg

scattering will also limit the information attainable through

the �PDF method.

Optimizing the�PDF model with the differential evolution

method is a practicable method for fitting a disorder model to

the experimental�PDF. In the process of model optimization,

only constraints on the symmetry and geometry of the cluster

were applied that were directly obtained from analysis of the

average structure, the diffraction pattern and the PDF. There

were no physical constraints, such as optimizing bond lengths

or free-energy minimization. Though successful in finding a

satisfying solution, differential evolution turned out to be a

slow optimization method, since it covers a large volume in

parameter space to search for the best solution and therefore

requires many recalculations of the model. Further, it is

difficult to derive estimated standard deviations of refined

parameters when using this method (Weber et al., 2008). A

promising alternative may be least-squares refinements, whose

potential for optimizing 3D-PDF models will be examined in

future applications.

The present study of disorder in d-Al65Cu20Co15 is the first

quantitative refinement of superstructure disorder in quasi-

crystals using an atomic model. The refined model is consistent

with the experimental diffraction pattern, it is reasonable from

a chemical point of view, and in major parts it is compatible

with structure motifs previously described in d-Al–Cu–Co or

closely related quasicrystal or approximant structures.

Different to most other models is the arrangement of the atom
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Figure 11
The disordered structural motif embedded in the d-Al–Cu–Co super-
cluster reported by Deloudi (2008). Borders of decagonal clusters (red
lines) and the atom decoration are shown as proposed by Deloudi (2008).
Sections of the two layers of the�4 Å structure are shown. Yellow circles
mark possible locations of the disordered structural motif. The left image
features flat rings of the structural motif, whereas the right one shows the
puckered rings perpendicularly beneath or above. For comparison, the
atom positions of the averaged disordered structural motif are shown at
the top. The disordered motif may occur at the centres of single clusters of
Deloudi’s model, as well as at intersections of clusters. In the background,
electron density maps after Steurer & Kuo (1990) are shown. The vertical
edge length of each image is about 38.2 Å.
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sites on the outer ring in the flat layer. However, incon-

sistencies in the structures proposed in the literature do not

allow a clear decision about the reliability of this structural

feature. Open questions include the distribution of the

elements among atomic sites, details about intra-cluster

disorder and the positions of ordered atoms within the regime

of a cluster. All these uncertainties could most probably be

resolved if the average structure were known more precisely.

It may further be argued that the rod-group symmetry of the

real cluster might be lower than p102c. This was not tested,
because modelling would have become far more complicated

as a result of the increasing number of parameters and

because of the many time-consuming trial-and-error cycles

required for finding the symmetry element of the real cluster

to be dropped. Further, there are no indications for lower rod-

group symmetry apart from very weak violations of the diffuse

c-glide plane extinction rules. Despite some shortcomings of

the model, major aspects of the real structure, such as the

atomic model of puckered layers, the identification and size of

the disordered cluster, as well as spatial correlation between

clusters, could, however, be determined reliably. The results

therefore provide a solid basis for a deeper understanding of

order and disorder in d-Al–Cu–Co and closely related

compounds.

The intention of this paper was to prove the principles of

3D-PDF modelling techniques. It mainly addressed experi-

mental and theoretical aspects that are specific to the

problems tackled in this work. More general discussions will

be given in future contributions. A computer program that

allows 3D-PDF and 3D-�PDF refinements in a broader

context is currently under development.

The authors thank the Swiss National Science Foundation

for financial support (project Nos. 200020-105158 and 200020-
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Qiu, X., Božin, E. S., Juhas, P., Proffen, T. & Billinge, S. J. L. (2004). J.
Appl. Cryst. 37, 110–116.

Saitoh, K., Tsuda, K., Tanara, M., Tsai, A. P., Inoue, A. & Masumoto,
T. (1996). Philos. Mag. A, 73, 387–398.

Schaub, P., Weber, T. & Steurer, W. (2007). Philos. Mag. 87, 2781–
2787.

Scholpp, T. (2001). PhD thesis, ETH Zürich, Switzerland.
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Appendix 4.A: Decagonal rod groups 

Decagonal rod groups were used to characterise the columnar building units of the average and 

real structure of d-Al–Cu–Co in section 4.3.5. However, decagonal rod groups have not been 

published as yet. The decagonal groups and their symbols herein used before were deduced in 

analogy to the system of rod groups of periodic symmetries in International Tables for 

Crystallography, Vol. E (Kopsk  & Litvin, 2010). Fig. 4.12 shows the symmetry elements of the 

mentioned two decagonal rod groups. Group p102m, identified in the average structure of d-Al–

Cu–Co, is a supergroup of p102c, which characterises the structural motifs in the real structure: 

averaging of p102c symmetry with itself shifted by half of its period along the rod axis yields 

p102m symmetry. 

Appendix 4.B: Burkov's model 

In section 4.3.6 possibilities of localisation of the identified disordered structural motif within the 

average-structure supercluster of Deloudi (2008) were demonstrated (cf. Fig. 4.11). In addition, a 

comparison to the average-structure model of Burkov (1993) is presented here (Fig. 4.13). 

Burkov's model was the first atomic structural model published for d-Al–Cu–Co. It is a theoretical 

structure model and was developed without backing by experimental data. The disordered 

structural motif could be localised in Burkov's average structure model. It can be seen from 

Fig. 4.13 that, in contrast to the structures of Steurer & Kuo (1990) and Deloudi (2008), the 

variation of the radial distance in the outer flat ring of the disordered structural motif is covered by 

Burkov's model, even though the match of positions is not exact for some single atom positions. 
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Figure 4.12: Symmetry diagrams of decagonal rod groups p102m and p102c (right column). Graphical 

symbols follow International Tables for Crystallography, Vol. E (Kopsk  & Litvin, 2010). The 10 inversion 

axis is in the centre of each diagram. Thick solid lines: mirror planes; dotted lines: glide planes with glide 

vectors of half-length of the lattice vector parallel to the projection plane; arrows: twofold rotation axes 

parallel to the plane. Small fractions indicate the height (as fractions z of the translation vector along the 

projection axis) of the rotation axes above the plane of the diagram, unless the value is zero. In the left 

column the local symmetry elements in the flat and puckered layers of the disordered structural motif of d-

Al–Cu–Co are shown, i.e. two different layer types in the ~4 Å average structure (p102m), and four different 

layer types in the ~8 Å local structure (p102c). In the p102c structure the two flat and the two puckered 

layers are symmetry equivalent each to another. 
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Figure 4.13: The disordered structural motif localised in the tiling of the structural model (grey background) 

by Burkov (1993) in projection along c. Empty symbols mark atoms at z = 0, full ones at z = 0.5 in respect to 

the ~4 Å structure. : Al, : Cu, : Co. Black and dark grey circles mark the puckered and flat rings of 

the superposed disordered structural motif, respectively. Positions of the atoms of the disordered structural 

motif are marked by crosses (puckered layers) and crossed circles (flat layers). Note that atom positions of 

the averaged motif are shown that cannot be occupied all at the same time. Straight dashed grey lines 

indicate mirror symmetry of the averaged disordered structural motif, which is partially fulfilled in Burkov's 

model. 
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When incoherent and multiple scattering contributions are ignored, the observed scattering 

intensity Iobs of a diffraction experiment can be expressed as 

Iobs(h) = IBragg (h) + Idiffuse (h)( ) rs(h)[ ] + IBackgr(h){ } d(h) , (5.1) 

wherein rs(h) is the reciprocal space resolution function and d(h) the envelope function of the 

reciprocal space volume covered by the experiment (for a definition see section 4.2.3). 

Convolution with an invariant function rs(h) is a strong simplification in the above expression, as 

rs(h) can vary notably within a measured diffraction pattern. The PDF calculated by Fourier 

Transform of Iobs is 

Pobs(r) = Phkl (r) + P(r)( ) Rs(r)[ ] + FT IBackgr(r)( ){ } D(r) . (5.2) 

Rs(h) and D(h) are the respective Fourier transforms of rs(h) and d(h). These factors, as well as the 

background intensities IBackgr(h) have a notable influence on data quality of Pobs. 

In this chapter, some practical aspects of 3D-PDF, and particularly 3D- PDF analysis are 

outlined, in order to put the idea of the capabilities and requirements of these methods across. 

These issues may vary by the problem examined case by case. Practical implementations are 

exemplified on N,N',N''-tris-t-butyl-1,3,5-benzene tricarboxamide and d-Al–Cu–Co, which were 

discussed in chapters 3 and 4. 

5.1. Experimental impacts 

Due to several experimental factors, such as beam incoherence, divergence or bandwidth of its 

wavelength, the finite size or the mosaicity of the sample, the point spread function of the detector, 

just to mention a few, scattering intensities are broadened by an experimental reciprocal resolution 

function rs(h). These factors are not specific to PDF investigations, but are a common challenge in 

diffraction experiments. A detailed discussion of the influence of the resolution function and the 

detector envelope function on the PDF was given in section 4.2.3. For a real-world application on 

d-Al–Cu–Co see section 4.3.4. 
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5.2. Data quality enhancement 

Experimental single crystal scattering data sets, reconstructed into undistorted reciprocal space 

coordinates, typically form an irregularly shaped data volume of voxels containing scattering 

intensities. The shape of this data volume, d(h), depends on the type of detector used, the 

oscillation range covered by the experiment, beam stop shadows, etc. These factors all effect 

spurious and complex termination ripples in a 3D-PDF or 3D- PDF when the data is Fourier 

transformed. This effect can be minimised by using a data set with preferably homogeneously 

shaped d(h), spanning to large diffraction angles, as it is also practised in measurements for 

powder PDF analyses. Experimental setup and realisation should be designed to comply with these 

conditions. 

Additionally, by suitable data processing, the data quality can be significantly enhanced. In the 

process of symmetry equivalent averaging, data are averaged with all of their experimentally 

available symmetry equivalent orientations given by the crystal’s Laue group. The envelope of 

reciprocal space covered by the experiment becomes larger that way, and voids become filled. The 

signal-to-noise ratio is improved where multiple data points overlap (see Fig. 5.1). The symmetry 

equivalent averaged diffraction patterns of N,N',N''-tris-t-butyl-1,3,5-benzene tricarboxamide and 

d-Al–Cu–Co are shown in Figs. 5.2 and 5.3. 

A further factor disturbing the primary data is static background intensities, originating e.g. 

from air scattering and experimental equipment extending into the beam. A discussion of the 

treatment of background intensities in 1D powder based PDF analysis is found in Toby & Egami 

(1992). In case of Bragg scattering based single-crystal investigations, the influence of background 

noise is usually easy to estimate or to correct for, as Bragg peaks are narrow and sparsely 

distributed, and thus interpolation of background noise is straightforward. However, diffuse 

scattering intensities are continuous and may be in the same order of magnitude as the background 

signal, and thus a careful treatment of background intensities is necessary. 

If, for simplicity, a uniformly flat or a broad Gaussian-like humped background signal is 

assumed in reciprocal space (i.e. no “powder ring”-like features originating from the sample 

environment or similar are present), this leads to an addition of a Dirac -function or a narrow 

Gaussian-like peak in the origin of PDF space. However, due to the clipping of IBackgr(h) by d(h) 

this narrow peak may be accompanied by strong truncation ripples. Exclusion of the background 

signal is therefore beneficial. 
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Figure 5.1: Comparison of an enlarged section of the hk1-layer of N,N',N''-tris-t-butyl-1,3,5-benzene 

tricarboxamide before (top) and after symmetry equivalent averaging (bottom; cf. Fig. 5.2). Note the 

improved signal to noise ratio achieved by averaging. The size of each image is 0.6  0.4 Å. 

 

Background intensities can be estimated from a reference measurement without a sample, or, 

more favourable, directly from regions in the scattering pattern, where no scattering intensities, 

Bragg or diffuse, occur. The possibility and plainness of removing static background noise 

depends on the complexity of diffuse scattering, thus. In patterns that show merely clear and 

narrow domains of diffuse scattering in one or two dimensions, such as streaks or planes, it is 

fairly effectual to reconstruct background intensities by interpolation over ranges where they are 

hidden by structural scattering. These background intensities can be easily subtracted from the 

experimental data. In case of complex 3D networks of diffuse scattering, more intricate models of 

background intensities have to be set up. 
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Removal of background intensities always involves the risk that along with the effective static 

background noise also parts of the unstructured monotonic scattering intensities (see section 2.1.3) 

are subtracted. Fortunately this procedure has no serious impact on subsequent PDF analysis, as 

these intensities just incorporate information on random disorder, but no information about 

correlated disorder. Diffuse scattering intensities can be interpreted as a Fourier series (cf. 

section 2.1.3). By removal of monotonic contributions from the total diffuse intensities, a certain 

number of non-interfering Fourier coefficients is subtracted from the summation, but the 

remaining term still comprises all information about non-random pair correlations. As a 

consequence of unintended removal of unstructured broad scattering components, the resulting 

PDF shows a difference in and very close to its origin, but there is no strong implication on the 

distribution of distant correlation densities. Accordingly, this effect has to be considered in case 

the PDF density of the origin peak is quantitatively evaluated. All the same, the interpretation of a 

PDF does not permit doubtlessly recognising random disorder, irrespective whether monotonic 

scattering intensities were subtracted along with the background or not. However, presence of 

random disorder can be deduced from atomic displacement parameters in the average structure, 

provided that an average structure solution of sufficient accuracy is available. 

In both investigated datasets, N,N',N''-tris-t-butyl-1,3,5-benzene tricarboxamide and d-Al–Cu–

Co, diffuse scattering intensities were restricted to sharp layers perpendicular to the c* axis. 

Background intensities underneath the diffuse intensities were therefore determined by 

interpolation from intensities slightly above and below these layers (see sections 3.4 and 4.3.3). 

For that reason, layers containing background intensities were reconstructed likewise the 

diffraction layers in all possible symmetry equivalent orientations. In case of the tricarboxamide 

the offset was ±0.007 Å, and ±0.022 Å-1 in case of d-Al–Cu–Co. Subsequently the layers were 

averaged, and the background intensities between two adjacent layers were interpolated and 

subtracted from the measured scattering intensities. The background corrected scattering 

intensities are shown in Figs. 5.2 and 5.3. 
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Figure 5.2 (pp. 60-63): Steps of data processing of the 

experimental single-crystal X-ray diffraction pattern of 

N,N',N''-tris-t-butyl-1,3,5-benzene tricarboxamide. 

Diffraction layers hkl with l = 0 to 6 are shown. From 

top to bottom: reconstructed diffraction pattern — after 

symmetry equivalent averaging — after removal of 

static background intensities — after elimination of 

Bragg peaks via a “punch-and-fill” filter. The edges of 

each box cover a range of ±0.91 Å-1. To increase the 

visibility of weak diffuse scattering, the intensities of 

the images with l  4 were scaled by factor 2. 
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Figure 5.3 (pp. 64-68): Steps of data processing of the experimental single-crystal X-ray diffraction pattern 

of d-Al–Cu–Co. Main layers and diffuse interlayers from l = 0 to 4.5 are shown. From top to bottom: 

reconstructed diffraction pattern — after symmetry equivalent averaging — after removal of static 

background. Main scattering layers are presented for the sake of completeness and were not used in PDF 

analysis. The edges of each box cover a range of ±1.187 Å-1. In the layers hk0 and hk0.5 the beam-stop 

shadow was masked. In layer hk0.5, the resulting gap was filled in the averaging process with measured 

intensities from layer hk-0.5. 
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5.3. Bragg peak elimination 

As pointed out in section 2.1.7, analysis of the PDF is preferred over the total scattering PDF. 

Information on difference structure correlations has to be separated from average structure 

contributions therefore. In reciprocal space, these contributions of long-range ordered lattice 

vectors are confined to the well-defined nodes of the reciprocal lattice. In PDF space on the other 

hand, the correlation lengths of locally disordered structural motifs are on the same length scale as 

short interatomic distances of the average structure, and so they could just hardly be distinguished 

in the total scattering PDF. Hence, diffuse scattering intensities have to be separated from Bragg 

intensities before the PDF is calculated. In most parts of reciprocal space |Fhkl(h)|2 = 0, and the 

term I(h) - |Fhkl(h)|2 can be easily calculated to obtain the PDF. Special care has only to be taken 

at the Bragg peak positions. 

A straightforward way to filter the data is the “punch-and-fill” method (Kobas et al., 2005). At 

reciprocal lattice points, i.e. at the positions of Bragg peaks, the scattering intensities are firstly 

cleared (punch), and thereafter, restored to probable values estimated from the surrounding area 

(fill). The extent of the punched and afterwards filled volume is specified via a window function 

wp&f(h), with wp&f(h) = 1 within the range to be punched and wp&f(h) = 0 elsewhere. fp&f(h) is the 

estimated fill function, thus the PDF calculated from a “punched-and-filled” data set is (for the 

derivation see Kobas et al. (2005)) 

Pp& f (r) = Ptot (r) Ptot (r) + Fp& f (r)( ) G(r)Wp& f (r)( )[ ] P  (5.3) 

Here, G(r) is the Fourier transform of the reciprocal lattice function, corresponding to the 

translation function of the unit cell; Fp&f(r) and Wp&f(r) are the transforms of fp&f(h) and wp&f(h), 

respectively. As wp&f(h) is usually a narrow box function, Wp&f(r) is a broad shaped function, 

which does not bias the PDF at short correlation lengths. For ideally chosen fp&f(h), the term 

((Ptot(r) + Fp&f(r))  (G(r) · Wp&f(r))) comprises the complete periodic fraction of the PDF. 

Consequently, Pp&f(r) represents the non-periodic correlations, equal to P(r). For further details 

on the “punch-and-fill” method see Kobas et al. (2005). 

To ensure that the “punch-and-fill” filter yields an optimal result, the size of the window 

function has to be chosen as narrow as possible, but still large enough to fully cover the boundaries 

of all Bragg peaks. 

In practice two differing methods to separate diffuse scattering from Bragg scattering 

intensities by means of a “punch-and-fill” filter were tested on N,N',N''-tris-t-butyl-1,3,5-benzene 

tricarboxamide. In the first approach, the “punch-and-fill” process was directly applied on the raw 

data as they were available from measurement. Removal of Bragg peaks in this early stage has the 
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advantage that these unwanted intensities will not bias the further process of data processing. 

Additionally, inadequatenesses of the “punch-and-fill” filter will be diminished in the forthcoming 

averaging process, e.g., if some marginal intensities of a wide Bragg peak persist, or if the fill 

process includes erroneous data in the surroundings of the eliminated peak. 

The positions of all expected Bragg peaks within the data volume were calculated using the 

Ewald construction. The required parameters of experimental setup, such as the orientation matrix 

of the crystal's coordinate system relative to the laboratory coordinates, the sample–detector 

distance, and the horizontal and vertical offset of the detector from the ideal origin, were 

determined using the software package XDS (Kabsch, 1993). Coordinates of Bragg peaks were 

calculated in the detector coordinate system (xd, yd, ), in which the oscillation angle  is 

proportional to the frame number in the sequence of recorded 2D sections of reciprocal space. At 

each coordinate of a Bragg peak an ellipsoid with half axes 1.35 mm  1.35 mm  1.50° was 

punched out (Fig. 5.4). The size of the equatorial circular section of such an ellipsoid corresponds 

to an opening angle 2  = 0.05° in the centre of a data frame at the sample–detector distance of 

179.77 mm. Subsequently the punched volume was filled with a constant average value, which 

was calculated from the remaining pixel values in a cuboidal box enclosing the ellipsoid. After the 

“punch-and-fill” filter was applied, the data were transformed into undistorted reciprocal space 

coordinates as specified in section 3.4. 

In a second approach, diffuse scattering intensities were separated from Bragg scattering after 

symmetry equivalent averaging and subtraction of the background signal in the reconstructed 

reciprocal space data, as described in section 3.4. As Bragg peaks lie on a regular lattice (Fig. 5.2), 

they are much simpler to localise at this stage. A 2D circular window function with diameter 

0.02 Å-1 was used to punch Bragg peaks. The fill function was similar to the example above, 

except that a 2D square box function was used now to calculate the fill values. A drawback of this 

method is that the fill function produces uniformly flat plateaus within the diffuse intensities that 

may simulate a non-existing long-range periodicity. Further, remaining strong intensities of 

improperly punched Bragg peaks will produce spurious fill levels. 

However, the obtained diffuse scattering intensities of N,N',N''-tris-t-butyl-1,3,5-benzene 

tricarboxamide did not significantly differ after all steps of data enhancement, irrespective in 

which of the two ways the “punch-and-fill” method was implemented. The segregative distribution 

of Bragg and diffuse intensities was evidently too clear in this simple example to be decisive 

between the two variants. 
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Figure 5.4: The “punch-and-fill” method applied directly on the raw data of the X-ray diffraction 

experiment. The three steps shown are from left to right: before application of the “punch-and-fill” filter, 

after the punch process, and after the fill process. The top row shows a full data frame of the Marresearch 

mar345 image plate detector, the lower row shows enlarged sections. 

 

In the study of d-Al–Cu–Co, on the other hand, no “punch-and-fill” of single Bragg peaks was 

necessary. For analysis of disorder in the twofold superstructure only the diffuse interlayers were 

of interest, and the main scattering layers could be ignored (see section 4.3.4). For this reason, only 

the intensities of the diffuse interlayers at l = -4.5 …4.5 were included in the further analysis, 

whereas the layers at integral l coordinates were set to zero. No supplementary data filtering was 

necessary. This procedure is equal to applying a “punch-and-fill” filter with a window function 

covering the whole Bragg layers (wp&f(h) = wp&f(h,k,l) = 0 with l = -4, - 3, …, 3, 4 and wp&f(h) = 1 

elsewhere) and a fill function fp&f(h) = 0. 

5.4. Fourier transform 

Experimentally collected scattering intensities are sampled in a limited reciprocal-space volume at 

a given voxel resolution. The PDF is computed by discrete Fourier Transform (DFT), hence: 
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P(r j ) =
1

N
I(hn ) cos(2 r jhn ) + isin(2 r jhn )( )

n= 0

N 1

 (5.4) 

For a given 3D scattering data set with edge lengths H, K, and L in reciprocal orthogonal voxel 

space, the voxel sizes of the computed PDF become H-1, K-1, and L-1, respectively. Depending on 

the maximum measured diffraction angle and oscillation range, as well as the wavelength used, H, 

K, and L amount to a few Å-1 for typical area detectors in a single-crystal experiment. 

Consequently, the voxel sizes are in a range of several 0.1 Å. The number of sampled voxels per 

each edge, nH, nK, and nL, typically amounts to several hundreds or thousands, thus the ranges 

covered by the 3D-PDF become XP = ±0.5 nH/H, YP = ±0.5 nK/K and ZP = ±0.5 nL/L, which is 

usually considerably larger than the range of interest for local disorder phenomena. Thus the pixel 

size of common area detectors is not a critically influencing factor in 3D-PDF analysis. 

After the symmetry equivalent averaging process, the experimental data are a truly real-even, 

centrosymmetric function, i.e. I(h) = I(-h). Consequently the term (I(h) i sin(2  r h)) sums up to 

zero, and the Fourier Transform of N=nH·nK·nL discrete data values reduces to a real-valued 

discrete cosine transform (DCT), so that 

P(r j ) =
2

N
I(hn )cos(2 r jhn )

n

half
volume

. (5.5) 

wherein the summation runs over a non-redundant half of the data volume. Both, memory 

requirements and time consumption of the computation can be reduced appreciably. 

5.5. Implementation note on Fourier Transforms 

For convenience, instead of using a DCT a discrete Hartley transform (DHT; Bracewell, 1983) 

was computed in the software implementation developed for this work. Computation of the PDF 

via DHT instead of DCT was chosen because of the easy to use interface of the available software 

libraries (FFTW3; Frigo & Johnson, 2005), and the easy to implement data post-processing routine 

(see below). The PDF calculated by DHT is 

P(r j ) =
1

N
I(hn ) cos(2 r jhn ) + sin(2 r jhn )( )

n= 0

N 1

. (5.6) 

As an inversion centre is always present in a PDF, the sine terms will sum up to zero and the 

transform is equivalent to a DCT. 
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The scattering intensities were first Hartley transformed separately in all three space 

dimensions. Fast DHT (Bracewell, 1984) routines of the FFTW3 software library were used. The 

worst-case complexity of these transformations of a data set consisting of N voxels is O(N logN). 

In order to obtain the true 3D DHT, the data were post-processed using the method by Hao & 

Bracewell (1987) thereafter. The complexity of this data processing step is O(N), so it is negligible 

compared to the DHT process. There is no gain in speed using a DHT instead of a DCT. A 

drawback of the implementation by DHT is, however, that the input data cannot be reduced to a 

non-redundant half-space volume, and so memory consumption is higher than by DCT. 
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In the following, additional aspects of 3D- PDF modelling are presented as an extension to the 

results shown in chapter 4. Again, the twofold superstructure of d-Al–Cu–Co serves as basis for all 

following investigations. 

In this chapter, two different definitions of the reliability index R will be used and compared. 

On one hand, these are the R values calculated from PDF densities as they were defined by 

eq. 4.17 and used in for the refinement presented in section 4.3.6 to evaluate the agreement 

between experimental and modelled PDFs. On the other hand, collateral R values are likewise 

calculated directly from diffuse scattering intensities in the following (for a definition see 

section 6.4.1). In order to differentiate between the R values refined against the PDF densities, or 

against the diffuse scattering intensities respectively, the symbols RP and RI will be used 

hereinafter. 

6.1. Analysis of the sensitivity of PDF models to PDF space resolution 

6.1.1. Objective and method 

In section 4.3.6, a 3D- PDF computed from diffuse X-ray scattering of a modelled structural unit 

was successfully compared to experimental PDF data. The size of the model 3D- PDF was 

determined by intrinsic properties of the sample, i.e. in xP and yP direction by the maximum 

correlation length found in the experimental data, and in zP direction by the periodicity of the 

twofold superstructure in c direction. The PDF voxel size, however, was constrained to be 

identical in the experimental and the modelled data set, and was predetermined by the extent of 

reciprocal space covered by the experiment, i.e. it was a consequence of experimental design. 

Factors that have an effect on the PDF voxel size are, thus, the wavelength used in experiment, the 

maximum diffraction angle measured, the size of the area detector, and the choice of an oscillation 

angle that covers at least one full asymmetric unit of the experimentally accessible reciprocal 

space volume. 

As in the PDF neighbouring voxel values are statistically dependent on their neighbours, PDF 

densities are expected to be sensitive to variations of interatomic distances that are much smaller 

than the voxel size. In order to estimate the sensitivity of PDF models in dependence of the PDF 

voxel size, a qualitative study of synthetic 3D- PDF data, comparable to the results presented in 

chapter 4, computed at different voxel sizes was carried out. 
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For this test, PDFs of a single Al atom pair separated by an interatomic vector d (i.e. an 

interatomic distance d = |d|) were computed. An average structure with an occupation factor of 0.5 

on each of both atom sites was assumed. Relative to this, a real structure representation was 

defined via a difference structure, with a relative occupation of +0.5 on one atom site, and -0.5 on 

the other one, simulating one fully occupied Al site and one vacancy. A reference 3D- PDF was 

computed at different voxel sizes (see below) for this structure with the two atom coordinates 

(1.331 Å, 0.433 Å, 0.000 Å) and (-1.331 Å, -0.433 Å, 0.000 Å), respectively. The interatomic 

distance dref was 2.800 Å. The position of the two atom sites was chosen in a general orientation, 

so that their connecting vector did not coincide with the symmetry elements of the orthogonal PDF 

voxel grid, except the (xP,yP)-plane. In this way highly symmetric PDF peak shapes were avoided. 

A series of test 3D- PDFs was computed then, with varying interatomic distances d, The 

orientation of d and the relative occupation factors of +0.5 -0.5 were kept constant. RP values were 

calculated, comparing each of these PDFs with the reference PDF. The fitness function RP was the 

same as described in section 4.3.6. No masking or weighting of PDF voxels was applied. 

Generally speaking, the PDF of such an atom pair shows, additionally to a central positive 

density from self-correlations in the origin, a negative peak at each, d and -d. With variation of d, 

these peak positions move relatively to the origin. The integrated peak densities remain constant, 

but the peak shapes of the moving peaks slightly vary, depending on their intersection with the 

voxel grid. 

Series for d = 0.000 Å until 5.600 Å were computed at different voxel sizes. The total number 

of voxels in the diffraction patterns was left unchanged in all cases, namely 200 200 20 (the same 

as used for the structural model presented in chapter 4), but the voxel size was varied, simulating 

an experiment with a constant detector at different wavelengths or sample–detector distances. The 

procedure of calculation was the same as for the PDFs of the d-Al–Cu–Co model. In a first step, 

diffraction patterns of the atomic pair were computed, and subsequently PDFs were calculated. A 

spherical mask simulating the detector envelope function was applied to the diffraction data, each 

with a radius equal to half of the respective length of the edges in h and k direction. RP values were 

calculated for each series as a function of d, using a scaling factor determined by linear least 

squares fitting. 

The PDFs showed, as expected, only significant densities in the layers at zP  0.000 Å 

(Fig. 6.1). PDF series with voxel sizes of 1.000, 0.562, 0.421 (equal as in the d-Al–Cu–Co 

model), 0.211, and 0.100 Å in xP and yP directions were generated. The voxel size in zP direction 

was 0.411 Å in all cases. The stated voxel sizes correspond to edge lengths in orthogonal h and k 

directions of the respective diffuse diffraction patterns of ±0.500, ±0.890, ±1.187, ±2.374, and 

5.000 Å-1 (see Fig. 6.1). 
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Figure 6.1 (pp. 78-79): Diffraction patterns (hk0.5 layer) and 2D sections through 3D- PDFs (zP  0.00 Å) 

of the difference structure of an isolated Al–Al pair separated by a distance |d| = dref = 2.800 Å (for further 

details see text). The diffraction patterns, having 200 200 pixels each, cover different ranges of reciprocal 

space (as indicated in the figure). The resulting voxel sizes of the PDFs in xP and yP directions are 

(a) 1.000 Å, (b) 0.562 Å, (c) 0.421 Å, (d) 0.211 Å, (e) 0.100 Å. The range shown by each section of a PDF 

is ±5.05 Å in xP and yP directions. 

 

In an additional series, the PDF of a pair of Cu atoms was computed in order to measure the 

effect of incorrectly assigned atom types. The PDF voxel size was 0.421 Å in xP and yP directions. 

The further setup and procedure was identical as for the Al pairs. These PDFs were also 

compared to the reference structure occupied with Al atoms. 
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6.1.2. Results and discussion 

The RP values as a function of displacement off the ideal distance, d = d - dref, are shown in 

Fig. 6.2. It can be seen that, irrespective of the voxel size, the values of RP stagnate over a wide 

range of d, and then suddenly get trapped if the displacement goes below a certain limit. The 

fluctuation of RP is nearly the same for all voxel sizes, except for the largest voxels with size 

1.000 Å. Below a difference distance of about 0.8 Å to dref, RP declines steeply towards zero. The 

position of the inflexion point corresponds roughly to the width of the PDF peaks at about 10% 

of their maximum density. If d is longer than this threshold value, the peaks do not overlap 

significantly and RP is constantly high, governed only by the agreement of the two origin peaks. In 

the examples shown here, this level is at about 0.75. At a (unphysically short) distance d near zero, 

the electron densities of the atomic pair overlap in the difference structure, and RP increases again. 

Within the | d| <~ 0.8 Å range however, the negative PDF peaks overlap. The less their central 

positions are shifted relative to each other, the smaller R becomes. From the inset of Fig. 6.2, it can 

be seen that RP values are sensitive in the range of a few percent even for small offsets in the order 

of several 10-3 Å. RP values computed for the largest investigated voxel size 1.000 Å do not show 

an accentuated curve as they do for smaller voxel sizes. This is not a drawback in modelling a 

single atomic pair, but might result in a nondistinctive surface of RP in a larger-scaled real-world 

application. Thus for a single atomic pair, PDF modelling at an appropriate voxel size offers 

theoretically a very high accuracy, provided that there is no noise present, and the peak profiles of 

the experimental and the modelled peaks are identical. In practice however, this will hardly be the 

case. Additionally, when bigger structural units with a large number of atoms are modelled, PDF 

peaks will overlap, introducing numerical correlations. For these reasons, RP values will hardly 

ever drop to 0.0, and the comparatively high values encountered in the model of d-Al–Cu–Co in 

section 4.3.6 are consistent with this result. Nevertheless, it can be concluded that for standard 

experimental data PDF modelling allows determining interatomic distances with an accuracy of 

at least 10-2 Å. For reliable results, the voxel size is required to be significantly less than the typical 

width of PDF peaks. In the example shown here, this critical voxel size turned out to be 

approximately 0.8 Å. This result implies that specifically in case of the structural model of d-Al–

Cu–Co, the voxel sizes of 0.421 Å and 0.411 Å determined by experimental factors were 

sufficiently small enough. 
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Figure 6.2: RP values of PDFs with different voxel sizes of an Al–Al pair as a function of displacement d 

apart from the reference position at a distance of |d| = dref = 2.800 Å. The inset shows the highly enlarged 

interval d = ±0.01 Å. Crosses on the line indicate distances at which RP was sampled. For further details 

and a discussion see text. 

 

The RP values Å of the "incorrect" model occupied with a Cu pair calculated at a voxel size of 

0.421 Å are very similar to the values of the Al pair at the same voxel size (Fig. 6.3). Just within a 

range of | d| <~ 0.2 Å they differ clearly. This means that in the process of model optimisation, 

the scaling factor applied to the data in the calculation of RP buffers the difference originating from 

inadequately occupied atoms over a wide range of possible d, and not until the correct positions 

are closely approached, the difference in the peak profiles becomes significant. The minimum RP 

found for the Cu pair at d = 0 Å is about 0.048. This residual corresponds to a displacement of 

| d|  0.03 Å of a pair of correctly occupied Al atoms. Solely in terms of RP it is, hence, not 

possible to distinguish between a slightly mispositioned, but correctly occupied Al pair, and an 

accurately positioned pair of atomic sites that is occupied with Cu instead of Al. However, the 

kind of mismatch can be determined by inspection of the differences of the exact peak positions 

and profiles in the PDF. Although the effect is expected to be less substantial in larger atomic 

structures where each atomic site is dependent on multiple pair correlations, this observation is a 
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possible evidence for the scattering weighting factors converging slower than positional 

parameters in the optimisation process of the d-Al–Cu–Co model (see section 6.3). 

 

 

Figure 6.3: RP values of the PDF with voxel size 0.421 Å of a Cu–Cu pair as a function of displacement 

d apart from the reference positions (occupied with Al–Al) at a distance of |d| = dref = 2.800 Å. The inset 

shows the highly enlarged interval d = ±0.01 Å. Crosses on the line indicate distances at which RP was 

sampled. Note that the scale of the vertical RP axis of the inset is larger than in Fig. 6.2. For further details 

and a discussion see text. 

 

6.2. Comparative study of different partial models 

6.2.1. Investigated models 

As it was pointed out above, 3D- PDF analysis allows studying partial structural models. This 

useful quality will be illustrated on different partial realisations of the disordered structural motif 

found in d-Al–Cu–Co. The following four models were compared: 
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(i) The "complete" structural model is the variant discussed in chapter 4. It serves as a basis 

for all other variants listed below. 

(ii) The first partial model tested was identical to the "complete" model (i), except that the 

model parameter a (see section 4.3.5) was fixed to 0.000, i.e. no cylindrical exponential 

attenuation was applied. In this way, a qualitative impression of the necessity to allow for internal 

instability of the disordered structural motif is obtained. Further, this model variant will be useful 

in pointing the benefits of PDF modelling compared to reciprocal-space modelling out (see 

below). 

(iii) In the second partial model, the inner flat ring was dropped. In the initial trial-and-error 

stage of model evolution, it had turned out that the inner flat ring was the most unstable and 

fluctuating feature in the disordered structural motif. The model parameters associated with the 

inner flat ring converged slow and inconclusive. This observation also led to the omission of one 

fivefold atomic orbit of the initially tenfold inner flat ring in the "complete" model: The respective 

atoms positions did not move away from their original positions on the c-glide planes during 

refinement (cf. section 4.3.6). Hence, the inner flat ring consisted only of five atomic positions in 

the real-structure representation. Here, the influence of omitting also this five-ring of atoms on the 

PDF is tested. 

(iv) The last partial model comprises only puckered layers. This model conforms to the 

optimised version of the qualitative intermediate model presented in section 4.3.5. 

Models (i) to (iv) were refined using differential evolution in the same way as it was done for 

model (i) (see section 4.3.6). All dimensions and voxel sizes of the computed data sets were also 

identical thereto. The free model parameters and their initial values were, unless affected by one of 

the constraints mentioned above, defined as in Table 4.1. The four new structural models were 

optimised in an independent run each. 

6.2.2. Results and discussion 

The results of the refinements are listed in Table 6.1. PDF maps and the underlying diffuse 

diffraction patterns are shown in Figs. 6.4 and 6.5, respectively. It turned out that all models 

converged to solutions that describe equivalent structures. The partial models nicely reproduce 

their covered parts of the "complete" model (i). Variation of the parameter values is small, only 

with a few appreciable exceptions. Generally, it can be seen that the geometrical parameters are 

more consistent, whereas the occupational parameters show more, slight variations, indicating that 

the shortcomings of the partial models are primarily compensated by atomic occupation rather than 

by geometrical rearrangements. 
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Table 6.1: Comparison of the refined model parameters of different models of disorder of d-Al–Cu–Co. For 

a description of the model variants see text. For all refined models both reliability indexes, RP and RI, are 

listed. The index that was actually used to refine the respective model is printed in bold. For definitions of 

the model parameters see Fig. 4.7 and Table 4.1. 

 Model 

 (i) (i, diffuse) (ii) (iii) (iv) 

parameter      

rpi 4.802 Å 4.785 Å 4.796 Å 4.670 Å 4.783 Å 

rpo 7.395 Å 7.400 Å 7.403 Å 7.379 Å 7.334 Å 

zpi 0.208 Å 0.228 Å 0.219 Å 0.283 Å 0.255 Å 

zpo 0.368 Å 0.391 Å 0.385 Å 0.361 Å 0.457 Å 

pi -1.46° -1.62° -1.69° -1.53° 1.34° 

po -0.29° -0.26° -0.29° 1.62° 2.34° 

rfo1 5.407 Å 5.410 Å 5.408 Å 5.457 Å — 

rfo2 6.360 Å 6.317 Å 6.325 Å 6.408 Å — 

fo1 9.86° 9.93° 9.97° 9.61° — 

fo2 -2.67° -2.65° -2.64° -3.33° — 

rfi 3.866 Å 3.894 Å 3.877 Å — — 

fi -5.29° -5.54° -5.32° — — 

a 0.059 Å-1
 n/a 0.000 [1]

 0.066 Å-1
 0.081 Å-1

 

opo 0.712 0.602 0.613 0.627 1.000 [1]
 

ofo2 1.259 1.263 1.324 0.956 — 

ofo1 1.000 [1]
 1.000 [1]

 1.000 [1]
 1.000 [1]

 — 

opi 1.284 1.255 1.310 0.899 1.036 

ofi 1.297 1.321 1.380 — — 

RP [2]
 0.300 

0.327 [3] / 

0.387 [4] 
0.365 0.423 0.647 

RI 
[5]

 0.368 0.366 0.363 0.486 0.680 

Best individual 1
st
 time found in generation 

 1401 1694 1407 1052 206 

population size 

 150 140 140 130 80 

 

[1]
 fixed value 

[2]
 calculated with use of a cylindrical mask with radius 16.6 Å 

[3]
 with a = 0.059 Å-1 

[4]
 with a = 0.000 Å-1 

[5]
 calculated with use of a spherical mask with radius 1.187 Å-1
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At first, the partial model (iii), missing the inner flat ring, is compared to model (i). As a main 

difference, the inner puckered ring has a decreased diameter, but a slightly increased puckering 

height. In this way, the inner puckered ring, which is, regarding its diameter, the next smallest 

feature to the missing inner flat ring, compensates part of the shortest pair correlations. Although 

the allowed ranges of the positional model parameters were fairly wide, the displacements are 

small. Keeping the puckered ring close to the original arrangement seems to be favourable over 

compensating the missing correlation densities. Another remarkable difference to model (i) is the 

change of the angular displacement of the atoms on the outer puckered ring. This behaviour is also 

observed in the partial model (iv), which contains only puckered layers, thus the outer puckered 

ring tends to compensate missing pair correlations in both cases. The shortcomings of model (iii) 

are mainly at short correlation lengths (see Fig. 6.4). The difference in RP to the reference 

model (i) is about 0.12. This manifests that, even the role of the inner flat ring in the global model 

was not clear, it contributes notably to the PDF. 

Model (iv), without flat layer contributions, converged to an RP value of about 0.65, i.e. about 

0.35 more than the RP value of the complete model. Nevertheless, the configuration of the 

puckered rings is still similar to the "complete" model (i). However, puckering amplitudes are 

increased. zpo gets trapped at the upper limit of the allowed value range (cf. Table 4.1). Higher 

puckering amplitudes can be explained by a tendency to cover weak PDF densities in the layer at 

zP  1.23 Å, which are actually due to intra-layer correlations between flat and puckered layers. 

The scattering weighting factors of the inner and outer puckered ring are almost equal here, 

whereas in the other models the weighting factors of the outer puckered ring are generally less. 

When the PDF of model (iv) is compared to the experimental PDF (Fig. 6.4) as well as the 

PDF of the model (i) (cf. Fig. 4.8), differences are found that are of the same kind as in the case 

of the intermediate flat-layer model in section 4.3.5 (cf. Fig. 4.6a). 

The results of model (ii) with exclusion of exponential radial decay in the quasiperiodic 

directions are in good approximation equivalent to the "complete" model (i) (see Fig. 6.4, cf. 

Fig. 4.8). There are no remarkable changes in cluster geometry. The scattering weighting factor of 

the outmost feature, the outer puckered ring, has slightly decreased. On the other hand, the inner 

puckered and flat rings have slightly increased weighting factors. This observation shows that in 

absence of radial attenuation the too high level of distant PDF densities is countervailed by 

weakening the longest pair correlations. However, this reduction may not be too strong, as the 

short ring-internal neighbour-to-neighbour correlations are also affected. Accordingly, the model 

converged to RP = 0.365, which is significantly higher than for the same model with radial 

attenuation function taken into account. This indicates that in the real structure, disorder is 

prominent at short correlation lengths, and thus, intra-cluster disorder is present. 
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To summarise, by comparison of different stages of completeness of the model structure, it 

could be demonstrated that PDF modelling yields stable and interpretable results even for partial 

models. Even if RP values of incomplete models are significantly higher, the elementary 

characteristics of the disordered structure could be derived. Small deviations from the ideal values 

of the model parameters indicate a trend to compensate missing structural features, but nonetheless 

the structures did not drift away towards unreasonable solutions. In the examined models, 

parameters describing the geometry generally refine more stably than occupational parameters (see 

also below). 
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Figure 6.4 (pp. 87-89): Comparison of 2D (xP,yP)-sections through the experimental and the optimised 

modelled 3D- PDF of partial models (ii) to (iv) of d-Al–Cu–Co. In the lower left quadrant of each image, 

the difference between the experimental and the modelled 3D- PDF is shown. Positive differences 

( PDFexp > PDFmodel) are whitish, negative differences ( PDFexp < PDFmodel) are blackish. The area 

covered by each image is ±21.27 Å along each axis. The colouring scheme of the experimental and modelled 

PDF is the same as in Fig. 4.3. 
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Figure 6.5 (pp. 90-92): Comparison of experimental and modelled diffuse X-ray scattering intensities in the 

interlayers of models (ii) to (iv) of d-Al–Cu–Co (cf. Fig. 4.6b and 4.9). 
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6.3. Analysis of the evolution of residual values and free model parameters 

during optimisation process 

From Monte Carlo optimisation, it was reported that differential evolution technique is able to 

quickly confine the global minimum in a wide parameter search space. But in an advanced stage of 

refinement the performance becomes poor, because the probability of finding new better 

individuals decreases successively (Weber & Bürgi, 2002; Weber, 2005). This trend could also be 

confirmed in PDF optimisation. 

The evolution of the averaged RP values of the populations of the different partial model runs 

discussed above is shown in Fig. 6.6. In the initial population, the averaged RP values were 

relatively high in all model runs (typically between 0.45 and 0.65), reflecting the wide range of 

allowed initial parameter values. At this initial stage, the variance of the population is high, and the 

averaged RP of the whole population is considerably larger than RP of the best individual found. 

With increasing number of generations, the mean RP values decreased quickly in all model runs. 

The rate of decline depends on the number of free parameters refined and on the population size, 

but in all model runs RP levels off after about 500 to 600 generations at the latest. The mean RP 

values of the populations differed at this stage already less than 0.005 from the RP values of the 

best individuals. Both, the RP values of the best individuals and of the whole populations, 

decreased only slowly thenceforward. For instance in the "complete" model run (i), RP of the best 

individual improved from 0.301 at generation 594 to 0.300 at generation 1401. In the same period, 

the mean RP of the whole population sank from 0.303 to 0.300. 

Refinements were stopped when the mean RP did not improve for several hundred generations. 

Usually, this was the case after about 2000 generations. At this stage, all model parameters and RP 

of the individuals of a population had converged, within experimental resolution, to the values of 

the best fit found. 

During refinement, different groups of model parameters showed varying pathways of 

evolution (Fig. 6.7). The radial distances converged fastest towards the optimum value. In the 

refinement of model (i) these parameter levelled off after about 200-300 generations and 

converged completely before 1000 generations (Fig. 6.7a). The angular parameters as well as the 

attenuation parameter a needed about 200 additional generations to reach this stage, showing also 

slightly more fluctuating curves of their mean values (Figs. 6.7b,d). The latest convergence was 

found for the puckering heights (Fig. 6.7c) and the scattering weighting factors (Fig. 6.7e), the 

latter needed about 1500 generations to approach their final values. The late convergence and the 

remarkable oscillations of the mean values of the weighting factors during the refinement are in 
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agreement with the observation that occupations cannot be assigned correctly unless the position 

of the respective atom sites is known at a high accuracy (see section 6.1). 

 

 

Figure 6.6 (pp. 94-95): Evolution of the reliability indices RP and RI in different model refinements as a 

function of the number of generations of the run. Thick black curves: mean RP value (model (i) to (iv)) or RI 

value (model optimised on diffuse intensities) of the whole population; thin black curves: standard deviation 

of RP or RI of the population; grey curves: RP and RI value of the current best individual found, the solid 

curve shows the R values which were used for the respective optimisation (RP or RI), the dashed curve shows 

the supplemental, unused variant. The end point of the grey curves indicates the generation in which the 

final best fit was found. 
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Differential evolution is a practicable method for optimising structural models in PDF space. Its 

strength is the fast but rough approximation of the optimum. For more efficiently finding the final 

solution, a combination of differential evolution with other optimisation methods may be 

favourable, e.g. with least-squares technique, which is more efficient in finding a minimum 

configuration in narrow, confined search spaces. 

6.4. Model optimisation in reciprocal space 

6.4.1. Objective and method 

In the following, the results of optimisation based on PDF densities is compared to the also 

possible optimisation on diffuse scattering intensities, and the consequences on the obtained PDFs 

are discussed. For that reason, another independent model run of the "complete" model was 

performed (with identical setup and definitions of model parameters and parameter ranges), but 

instead of minimising the fitness of the PDFs by RP, the fitness was directly evaluated in 

reciprocal space using the scattering intensities of the diffuse interlayers. 

Following eq. 4.17, the reliability indexes RI and RP are defined by 

RI = R(Idiffuse (h)) =
Idiffuse
obs (h) Idiffuse

calc (h)( )
2

Idiffuse
obs( )

2 , (6.1) 

and 

RP = R( P(r)) =
Pobs(r) Pcalc (r)( )

2

Pobs( )
2 . (6.2) 

For the sake of simplicity, weighting and scaling factors of eq. 4.17 were skipped in the 

expressions above (nonetheless, they were included in calculations). 

With Plancherel's theorem, 

f (h)
2
dh = F(r)

2
dr  (6.3) 

(here F(r) is the Fourier transforms of f(h)), one obtains for the real-valued scattering intensities 

and PDF densities 

Idiffuse (h)
2dh = P(r)2dr . (6.4) 
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Figure 6.7 (pp. 97-100): Evolution of free model parameters as a function of the number of generations in 

the run of refinement of model (i). Black curves show the mean parameter values of the population, grey 

curves indicate their standard deviation of the population. (a) radial distances; (b) angles; (c) puckering 

heights; (d) exponential decay parameter; (e) scattering weighting factors. Vertical dashed lines at generation 

200, 500, and 1000 help to facilitate the comparison between the curves. 
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For a discrete data representation eq. 6.4 simplifies to 

Idiffuse,n
obs( )

2

n

= Pn
obs( )

2

n

, (6.5) 

and 

Idiffuse,n
obs Idiffuse,n

calc( )
2

n

= Pn
obs Pn

calc( )
2

n

, (6.6) 

and as a consequence 

R(Idiffuse(h))=R( P(r)).  (6.7) 

This means that for identical data, RI and RP are equal. Therefore also the global minima of RI and 

RP are identical, and any unbiased optimisation is expected to converge to the same parameter 

configuration for both types of refinement. 

The calculation of RI was carried out on the scattering intensities of the diffuse interlayers after 

the spherical mask was applied that simulated the detector envelope function (see section 4.3.5). In 

contrast to the calculation of RP, the cylindrical attenuation function was not included, as this filter 

was applied directly on PDF densities. Therefore, the results of the refinement optimised in 

reciprocal space should be compared to the PDF-optimised model (ii), which was optimised 

without inclusion of the exponential decay function (see section 6.2). Additionally, in the 

evaluation of RP, the maximum considered correlation length within the quasiperiodic directions 

was limited by a cylindrical mask function of radius 16.6 Å (defined by means of the weighting 

factor wi, see eq. 4.17). 

6.4.2. Results and discussion 

The model refinement against diffuse scattering intensities yielded a RI value of 0.366. As 

expected, this value of RI is nearly the same as the RI values of model (i) (RI = 0.368) and of 

model (ii) (RI = 0.363) (see Table 6.1, Fig. 6.8), which were both optimised against RP. In principle 

one could conclude that these three model solutions are all equivalent, thus. However, their RP 

values differ significantly. (The differences between model (i) and model (ii), both refined against 

PDF densities, were discussed above.) For the model optimised on diffuse scattering, two values 

of RP were calculated, one without the exponential decay function, and one with a = 0.059 Å-1, 

taken from the optimised model (i). When these two values are compared to the RP values of the 

appropriate PDF-optimised models, one finds in both cases a difference of more than 0.02. This 

means that, although the structural solutions have similar RI values, optimising against the PDF 

yields better results in PDF space. This cannot be a general consequence of a better adaptation to 

model space, because the contrary is not the case, i.e. the model refined in reciprocal space does 
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not show better RI values than the model refined in PDF space. The reason for the advantage of 

PDF-space modelling may be found in the additional data weighting that was applied in PDF 

space. The cylindrical mask and, if applied, the cylindrical attenuation function focussed the 

optimisation onto structural representative short correlation lengths, whereas spurious long-

distance signals, which cannot be covered by the spatially limited model structure, were ignored. 

Selective weighting of correlation lengths is, in principle, also possible in reciprocal space, but 

complex band-pass filters would be required to do so (cf. section 2.1.7). In PDF space, however, 

such filters are easy and straightforward to implement by simple data masking or scaling as a 

function of r. As it was shown, they may help to increase the model quality significantly. 

6.5. Model optimisation via an alternative fitness function 

6.5.1. The structural similarity index 

Besides the optimisation method also the choice of an appropriate fitness function is a crucial 

aspect in structural modelling. The general intention is to have a function that measures the 

closeness of the model to the observation. The fitness function governs the speed and accuracy of 

the model's convergence towards the observed data. Different definitions of the measure of 

agreement may lead to different results. A common group of fitness functions used in numerical 

models are functions that evaluate the differences between individual model and observation data 

points. Various ways of summation and normalisation of these differences, and diverse weighting 

schemes are possible. The reliability factor R used for optimising the structural model of disorder 

in d-Al–Cu–Co (eq. 4.17) is such a variant, which is well-established in crystallography. In order 

to test the reliability of R and the significance of the optimised model found, an alternative 

evaluation function was tested on the same structural model of d-Al–Cu–Co. 

The structural similarity index (SSIM; Wang et al., 2004), is uncommon in crystallography, 

and was originally developed for quality estimations in digital image processing. It was designed 

to give a numerical estimate of the human eye perception, including analyses of the overall 

quantities luminance, contrast and structure of a data representation. Unlike the R value, this index 

is not based on direct voxel-to-voxel differences. It rather uses statistical properties instead, i.e. 

global means, variances and the covariance. Although the method was primarily intended for use 

with 2D images, it can be applied to 3D data like the PDF. 
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Figure 6.8: Comparison of of 2D (xP,yP)-sections through the experimental and the optimised modelled 3D-

PDF of the "complete" model (i) obtained by refinement based on diffuse scattering intensities (Idiffuse). In 

the lower left quadrant of each image, the difference between the experimental and the modelled 3D- PDF 

is shown. Image sizes and the colouring scheme are the same as in Fig. 6.4. 
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The SSIM is defined as 

SSIM =
2µobsµcalc +C1( ) 2 obs ,calc +C2( )

µobs
2 + µcalc

2 +C1( ) obs
2 + calc

2 +C2( )
. (6.8) 

obs and calc are the arithmetic mean values of the observed and calculated PDFs (wherein s is a 

scaling factor determined by least squares fitting, identical as in the calculation of R): 

µobs =

Pobs,i
i=1

N

N
, µcalc =

s Pcalc,i
i=1

N

N
. (6.9), (6.10) 

obs and calc are the variance terms of the two PDFs, and obs,calc is their covariance: 

obs =

Pobs,i µobs( )
2

i=1

N

N 1
, calc =

s Pcalc,i µcalc( )
2

i=1

N

N 1
, (6.11), (6.12) 

and 

obs,calc =

Pobs,i µobs( ) s Pcalc,i µcalc( )
i=1

N

N 1
. (6.13) 

The constant values C1 and C2 stabilise the value of the SSIM when its denominator becomes very 

small. C1 = (K1 L)2 and C2 = (K2 L)2. L is the dynamic range of the data, which was assigned here 

as the differences of the maximum and minimum value of Pobs, i.e. L = Pmax - Pmin. K1 and K2 

are arbitrary values; in the presented investigation they were chosen so that their order of 

magnitude was inverse to the dynamic range. They were set to K1 = 1 · 10-7 and K2 = 3 ·10-7. If data 

sets Pobs and Pcalc are identical, the SSIM has value 1, otherwise it is less. For an extended 

discussion of the SSIM see Wang et al.(2004). 

The "complete" structural model of disorder was refined by the use of the SSIM as fitness 

function. The starting model and the setup were identical as in the optimisation refined against RP 

(see section 4.3.6). For consistency with RP, the SSIM was minimised as 1 - SSIM. 

6.5.2. Results and discussion 

The model run converged to a minimum index value of 1 - SSIM = 0.0550. The optimised 

parameter values of the refinement are listed in Table 6.2. Fig. 6.9 shows the evolution of the 

fitness measured by the SSIM as a function of generations. 

The general evolution of 1 - SSIM was similar to the evolution of RP (cf. Fig. 6.6). There is a 

steep drop-off within the initial 100 to 200 generations. The final best individual was found after 

1400 generations. The optimised model is equivalent to the optimised model found by means of RP 
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(see Table 6.2). Aside from a few negligible small differences, the parameter values are all 

identical in both refinements. Only the scattering weighting factors show slight variances, which 

are rather a consequence of the susceptibility of these parameters to compensate minor 

displacements than of a significant inadequacy of the used fitness functions. The corresponding RP 

value of the SSIM-based model is 0.300. Inversely, the RP-based model (i) (RP = 0.300) yields 

1 - SSIM = 0.0550. Accordingly the results are equivalent irrespective of which of the fitness 

functions, R or SSIM, was chosen for optimisation. 

Hence, optimisation of difference structure models by differential evolution is not strongly 

governed by the choice of the fitness function. The characteristics of the progression of the model 

evolution were similar in both cases. It is somewhat surprising that optimisation by means of the 

SSIM, which is not based on direct pixel-wise comparison, yielded exactly the same result as the 

optimisation by means of R. 

 

 

Figure 6.9: Evolution of the value 1 - SSIM in a refinement of the "complete" model (i) as a function of the 

number of generations of the run. The thick black curve shows the mean index value of the population, thin 

black lines indicate the standard deviation of the population. The grey curve shows the value of 1 - SSIM of 

the current best individual found. 
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Table 6.2: Comparison of the refined model parameters of the "complete" model (i) of d-Al–Cu–Co, 

optimised by the use of differential evolution based on RP, and the parameters of a identical model refined 

based on the SSIM. For definitions of the model parameters see Fig. 4.7 and Table 4.1. 

 RP SSIM 

parameter   

rpi 4.802 Å 4.801 Å 

rpo 7.395 Å 7.394 Å 

zpi 0.208 Å 0.209 Å 

zpo 0.368 Å 0.369 Å 

pi -1.46° -1.46° 

po -0.29° -0.29° 

rfo1 5.407 Å 5.408 Å 

rfo2 6.360 Å 6.361 Å 

fo1 9.86° 9.86° 

fo2 -2.67° -2.67° 

rfi 3.866 Å 3. 865 Å 

fi -5.29° -5.29° 

a 0.059 Å-1 0.059 Å-1 

opo 0.712 0.711 

ofo2 1.259 1.259 

ofo1 1.000 
[1]

 1.000 
[1]

 

opi 1.284 1.298 

ofi 1.297 1.282 

minimal value RP = 0.300 1 - SSIM = 0.0550 

best individual 1
st
 time found in generation 

 1401 1400 

population size 

 150 150 

 

[1]
 fixed value 
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7.1. 3D- PDF analysis and modelling 

In this work concepts of 3D-PDF analysis, and in particular 3D- PDF analysis were illustrated. 

The usability of 3D- PDF analysis was demonstrated on two example structures. The obtained 

results reveal that 3D- PDF method has great potential for further applications. In principle PDF 

analysis can be applied on any disordered crystal structure. The conditions that have to be fulfilled 

in practice are that the crystal possesses an average structure that is sufficiently known, and that 

the diffraction pattern shows diffuse scattering intensities that can be separated from Bragg 

intensities in some way. Qualitative 3D- PDF analysis yielded meaningful results for both of the 

investigated structures. It is, hence, a promising tool, which could become a standard method in 

characterisation of disordered single crystal structures. 

The practical application of difference structure modelling by 3D- PDF fitting could be shown 

on the characterisation of a disordered prototype cluster of d-Al–Cu–Co. Although the model 

optimisation by means of differential evolution yielded significant results, the method still suffers 

from the performance of the optimisation becoming poor with increasing number of generations. 

An improved optimisation process, e.g. by a combination of differential evolution with least 

squares techniques, is required for a broad and effective usage of this method. Another limiting 

point in PDF modelling is the high demand on computing power and memory capacity. For 

instance, the modelled 3D- PDF of d-Al–Cu–Co contained 800'000 discrete density values, which 

were computed from a scattering data set of the same size. By the use of the highly efficient FFTW 

software library (Frigo & Johnson, 2005) time consumption of the Fourier transform was 

comparable small for a single data set. But in the complete process of the refinement, it took 1401 

generations with 150 data representations of individuals in each to reach the optimal fit, i.e. 

1.68·1011 voxel values with PDF densities, making up 626 gigabyte of single precision floating 

point values, had to be computed. Apart from the expense for computing firstly the diffraction 

patterns and subsequently Fourier transforming them, this huge amount of data also causes 

bottlenecks in the computer's data bus, in memory allocation and in I/O-processes. For truly 

continuous 3D scattering intensities, which are not constricted to a layered distribution in 

reciprocal space as it was the case for d-Al–Cu–Co and N,N',N''-tris-t-butyl-1,3,5-benzene 

tricarboxamide, the amount of scattering data increases by several orders of magnitude. For a 

regular application of PDF modelling, adjustments and enhancements in software design are 

strongly required, thus. The continual improvement of computing resources may facilitate this 

process, though. A possibility to improve computing performance of model optimisation is to 

parallelise the computations on a cluster of processors. In differential evolution optimisation it is 
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an easy task to distribute the computations of the independent individuals to separate processors, 

as it was partially realised in the optimisation process of d-Al–Cu–Co (see section 4.3.6). On the 

level of individuals it is additionally possible to parallelise t he Fourier Transform of the 3D 

scattering intensities as a distributed-memory transform on multiple processors. High-performance 

algorithms for parallel 3D transforms are available (e.g. Brass & Pawley, 1986; Takahashi, 2003, 

and references therein). 

The simple “punch-and-fill” filter implementation applied to eliminate Bragg peaks uses a 

fixed punch window and an isotropic fill function. However, treatment of complex scattering 

features, such as weak diffuse scattering beneath strong Bragg peaks, or superposition of Bragg 

peaks with narrow diffuse streaks, also requires enhanced data filters for the extraction of diffuse 

intensities. 

In principle it is possible to develop PDF analysis and modelling further to an ab initio 

method, which sets up a complete model of disorder starting from a suggested average structure, 

without any further assistance. For this approach, additional techniques for automated assignment 

of vectors in PDF space to structural features in real space have to be available. This could be done 

either on a computationally intensive trial-and-error basis, or by fully developed, but complex to 

implement, pattern recognition algorithms. 

7.2. Total scattering 3D-PDF analysis and modelling 

In this work, the practical application of total scattering 3D-PDF analysis was not addressed. 

Nevertheless, also this approach has great potential for future research. Principles and concepts of 

total scattering 3D-PDF analyses are mainly the same as discussed for the PDF, except that the 

separation of Bragg and diffuse scattering intensities is omitted. The field of possible applications 

of 3D-PDF analysis is wide, comprising for instance: refinement of disorder in crystalline phases 

having diffraction patterns in which Bragg and diffuse scattering cannot be separated 

satisfactorily; direct refinement of the real structure of crystalline phases, including simultaneously 

features of the average structure and the difference structure; or the investigation of non-crystalline 

phases that show any kind of internal structural anisotropy (e.g. paracrystals). Many of such 

materials are nowadays examined by 1D (powder) PDF methods. 3D-PDF analysis might provide 

a direct access to the 3D structure of these materials and reveal additional structural information, 

which is not accessible with 1D techniques. However, 3D-PDF analysis is only applicable if 

samples of sufficient size and with macroscopic anisotropy are available. 
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In order to allow collecting strong Bragg and weak diffuse scattering intensities at the same 

time even if the signals lie close together, data collection for total scattering 3D-PDF analysis 

requires detector systems that cover the full dynamic range of the diffraction intensities of the 

sample, and that have low intrinsic noise and a narrow point spread function. Such measurements 

become possible with recent area detectors such as the PILATUS detector system (Weber et al., 

2008; Kraft et al., 2009). 

7.3. Disorder in N,N',N''-tris-t-butyl-1,3,5-benzene tricarboxamide 

On the example of N,N',N''-tris-t-butyl-1,3,5-benzene tricarboxamide it could be demonstrated that 

qualitative interpretation of the 3D- PDF is an expedient and easy-to-use method for deriving a 

qualitative model of disorder based on a well-known average structure. Investigation in PDF space 

allowed straightforwardly linking pair correlation vectors to structural features in real space. 

The qualitative results on N,N',N''-tris-t-butyl-1,3,5-benzene tricarboxamide reported in chapter 3 

serve as a solid basis for further structural investigations of this compound. There will be a refined 

structural description published in a forthcoming paper (Simonov et al., in preparation). This 

model of disorder allows for lateral displacements of the molecular columns, and for atomic 

displacement parameters. Correlation parameters across seven molecular shells were refined by 

least squares optimisation of the 3D- PDF. 

7.4. Disorder in d-Al–Cu–Co and other decagonal quasicrystals 

In the study on d-Al–Cu–Co, a prototypic disordered structural motif could be identified, even 

though disorder phenomena in this quasicrystal are complex, and knowledge on the average 

structure was limited. Although the structural description of decagonal quasicrystals is embedded 

in 5D space, the disordered twofold superstructure could be characterised with a 3D method in 3D 

space. The presented structural model of disorder (see chapter 4) is the most accurate known 

description of a disordered motif in a decagonal quasicrystal so far. Nevertheless, many questions 

about the structure, formation and stabilisation of d-Al–Cu–Co and decagonal quasicrystals in 

general remain open, and further investigations are required. With regard to d-Al–Cu–Co, PDF 

analysis of the thermal evolution could reveal additional information on the stability and 
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alterations of disordered structural motifs (cf. Weber et al., 2004, for a study on temperature 

dependence of d-Al–Ni–Co). Additional analysis of the weak medium-range pair correlation peaks 

longer than ~14.5Å, which were ignored so far in PDF analysis, could elucidate the relations 

between distinct disordered motifs. 

A comparative study of PDFs of different decagonal phases, particularly d-Al–Ni–Co, would 

surely be greatly beneficial to the universal understanding of decagonal quasicrystals. 
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