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Introduction

My main message is that in µSR experiments we are always fighting with poor counting statistics,
so we must do nothing to our data which makes matters worse, and we should do whatever we
can to extract the most from what we have.  The approach is geared to the typical set-up
encountered at the pulsed muon beams at ISIS, but is readily generalised to other situations.

1. A typical ISIS µSR data set.

A data set collected on the MUSR or EMU spectrometers at ISIS consists typically of 32
histograms containing between 1000 to 2000 time channels; the channel widths are 8 or 16 ns.
These widths are chosen to match the width of the muon pulse, which is of order 70ns (FWHM).
As an example let us consider a data set of 1500 channels, with channel width 16ns.  The total
time window for data collection is then 0 to 24 µs.  As the muon lifetime τµ is 2.2 µs, the end of
the time window corresponds to 10.9τµ , by which time the initial decay count rate will have
dropped by a factor exp (-10.9) = 2 .10-5!  Fortunately the background at ISIS is very low, so it is
still possible to collect data out to these times, though the statistics will inevitably be poor.

To develop a feeling for counting statistics, let us consider a standard silver run, measured for one
hour (this is a typical duration for a measurement), corresponding to 2.107 events (20"Mev"),
summed over all 32 histograms.  The counts in the n'th channel of the j'th detector are given by:

           Cj (tn) = Nj
0 ∆t exp(-tn/τµ) [1 + Aj cos(ωLtn - φj)] (1)

where Aj is the asymmetry parameter (typically Aj  = 0.23 at ISIS), φj is the phase, ∆t is the
channel width, Nj

0 is the initial count rate, ωL = γB is the muon Larmor precession frequency for
an applied field B and the gyromagnetic ratio γ/2π  = 135.54 MHz/tesla.  Ignoring the oscillatory
term in (1) for the moment, we can sum over all time channels, to estimate the total number of
events per histogram:
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Taking the total counts to be 2.107/32, then we find that Cj(0), the counts at the start of each
histogram, to be about 4500.  The statistical error in this count is √Cj(0) = 67.  Of all the events,
we are only interested in that portion associated with the asymmetry, AjCj(0) = 0.2 x 4500 = 900



counts.  It follows that the statistical error in the asymmetry, at the beginning of the histogram,
where we have the highest count-rate, is only 67/900 ≡ 7.4%.  This is not very impressive! And at
longer times it will be worse.  If we wanted, say, 1% statistics on the initial asymmetry we would
need √C/(0.2C) = 0.01, corresponding to Cj(0) = 2.5.105 counts, or a total of 109 events in all 32
histograms!  This would mean running for 55 hours on ISIS!

The moral is that in the average µSR experiment we are dealing with quite poor counting
statistics.  This is largely a consequence of (i) the signal being associated with only 20% of the
total counts, and (ii) the short lifetime of the muon.  Clearly it is essential, when analysing µSR
data, to make every event count and to avoid any process which throws away information, e.g.
grouping detectors with different phases together;  this might be useful for summary purposes, or
plotting data during an experiment, but it will reduce the effective asymmetry, and is therefore a
bad thing for the ultimate analysis of µSR data.

2. Determination of instrumental parameters.

2.1 Phases and start time.

The time tn in (1) is measured with respect to the start time t0, when the muons arrive in the
sample: tn = n∆t + t0.  The effective phase of the oscillatory term is therefore ψj = φj - ωLt0 = φj - γ
Bt0.  All detectors should have a common value of t0.  This can be determined by measuring silver
spectra for several different transverse fields B, fitting the count-rate to (1) to determine the
effective phases ψj, then plotting these as a function of B.  The plots give straight lines which,
when extrapolated to zero field, give the true phases φj. The start time t0 can be extracted from
the gradients.  Alternatively the phases ψj can be determined for different assumed values of t0,
then plots of  ψj(t0) for different fields should intersect at the true value of t0.

Fitting of (1) to a silver spectrum in order to determine the phases is straightforward: it can be
implemented by a linear least squares method, since (1)  can be written as: Cj

t = αj Ft + βj Gt, with 
αj = sin φj  and βj  = cos φj.  Then following the usual approach

χ α β σ2 2 2= − −∑[ ] /C F Gj
t

t
j t j t jt

and the values of αj and  βj can be found by minimising χ2 in the normal way.

2.2  Dead time corrections

The count-rate equation (1) assumes a linear detector response, i.e. that the number of detected
events in a given time channel is simply proportional to the number of decay positrons at that
time.   In general this is a reasonable assumption for low count rates, but at high count-rates we
have to correct for the "dead time" of the detector.  This arises because the counting chain cannot
respond to two events that come very close together: the counter is "dead" for a time τd after the
first positron is detected.  Since for µSR data the count rate is initially high and then falls with
time, the effect of the dead time will be biggest at early times, and will become negligible at later
times.  The corrections for dead time can be derived from a standard zero field silver run,



preferably one with good statistics.

To see the effect of dead time, let us consider a simple case, where N(t) represents the ideal
counting rate and M(t) is the recorded counting rate.  In a single time channel of width ∆t the
detector will be dead for a time M(t) ∆t τd, so the measured  count in this time channel will be
M(t) ∆t = N(t) ∆t [1 - M(t) τd ].  It follows that the recorded count rate is

M(t) = N(t) / [1 + N(t) τd] (2)

Clearly when N(t) is small, and the product N(t)τd «1, then M(t) ≈ N(t). However when the
count-rate is very high, the measured counts tend to the limiting value M(t) = 1/τd.  To determine
the dead times for each detector, the reciprocal of the measured counts in a zero field silver run
can be plotted against the reciprocal of N(t) with N(t) = N0 exp (-t /τµ).  From (2) it can be seen
that a straight line should result with intercept τd:

1/M(t) = 1/N(t) + τd

The value of the dead time can then be extracted from a least squares fit to the straight line. If
only a transverse field silver run is available, the same procedure can be used, but in this case the
ideal counts are as given in equation (1).  In practice for a typical ISIS count rate the dead time
corrections at short times are about 5% or less.

3. Analysis of µSR spectra

There are two perspectives for the interpretation of transverse field µSR spectra:

(a) the muon spins precess at a unique frequency ωL, but their polarisation decays with time
due to the muons' interaction with static or dynamic fluctuations in its environment.  In metals the
precession frequency ωL might be shifted slightly from the value γBext (Knight shift), reflecting an
enhanced susceptibility at the muon site in the sample.

(b) the muons at different sites see a distribution of internal fields, and therefore precess at
different rates.  This is the case, for example, in the mixed state of superconductors.

We will consider these situations in turn in sections 3.1 and 3.3, following.  In both cases there are
special techniques available which are useful for tackling data comprising multiple histograms.

3.1  Modelling the depolarisation in the time domain.

Case (a)   If the muons precess at a common frequency ωL, but their polarisation decays with
time, the counts in the n'th time channel of the j'th detector can be written:

Cj(tn) = Nj
0 ∆t exp(- tn / τµ ) [1 + Aj Px(tn) cos(ωLtn - φj)] (3)

Px(t) describes the decay of the muon polarisation. The form of this decay depends on the physics



of the muon's interaction with its environment.  In the limit of fast temporal fluctuations of the
local field or of rapid hopping of the muon from site to site it can be shown that Px(t) = exp(-λ t):
this is traditionally (and confusingly) called "Lorentzian damping" because this limit is identical to
the limit of strong motional narrowing in NMR, where the line-shape (equivalent to the Fourier
transform of Px(t)), is indeed a Lorentzian function.  In the limit of slow temporal fluctuations, but
where there is a Gaussian distribution local fields (inhomogeneous broadening) it is readily shown
that Px(t) = exp(- σ2 t2 ).  Other functions in the literature, e.g. the Abragam function, are designed
to describe circumstances between these two limiting cases.  The point is that the shape of the
envelope of the decaying polarisation gives information about the physics of the interaction at the
muon site, which can be described by an analytical function with a few parameters (e.g. λ or σ in
the above expressions).  Analysis of the data is then a simple matter of least squares fitting the
expression (3) to the data, with the appropriate form of Px(t).  Following our dictum in section 1,
we should, if possible, fit all the histograms (j=1 to 32) at the same time, without grouping them
together, after making necessary corrections for dead times.  In this case there will be three
instrumental parameters for each histogram, namely N0

j, Aj and φj, as well as the parameters
describing the polarisation Px(t).  In practice it is best to predetermine the phases as described in
section 2.1, using a standard silver run, since the phases might not be well determined in a fit to
the data, especially when the polarisation is rapidly damped.  Fitting 32x1500 time channels with
65 parameters might seem like a tall order, but computing power is cheap compared to the cost of
doing µSR experiments.  In the next section we show a way of combining multiple histograms
without losing information, which reduces considerably the effort of fitting models to the data.

3.2 Combining multiple histograms.

We need a technique that allows us to condense a data set comprising multiple (e.g. 32)
histograms without losing information.  The following method is based on unpublished work by
G.J.Daniell and has been implemented in a practical program for ISIS data by W.R.Dickson.
Starting from the raw data, as described by (3) above, it is straightforward to extract the
exponential decay term due to the muon lifetime and the uniform contribution.  This yields the
component of the signal that oscillates about zero:

dj(tn) = Nj
0 ∆t Aj Px(tn) cos(ωLtn - φj) =  Dj(t) cos(ωLtn - φj) (4)

for each histogram, j = 1 to J and time channel, n = 1 to N.  We also have the corresponding
variances σj(tn) in the dj(tn).  Now we can project all the data onto a given phase by taking a linear
combination of all the histograms.  Suppose we choose a value of zero for the phase: we can
define a function X(t) such that

  X t D t t x d tn j n L n j
j

j n( ) ( ) cos( ) ( )= = ∑ω

= −∑ x D t t tj
j

j n L n j L n j( ){cos( ) cos( ) sin( ) sin( )}ω φ ω φ (5)

Obviously this identity is true if the weights xj are chosen so that x j
j

j∑ =cos( )φ 1 and



x j
j

j∑ =sin( )φ 0 .   We can use these two conditions as constraints in a least-squares

minimisation of the square of the variance of our new histogram X(tn) by using Lagrange
multipliers.  We then have to minimise
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with respect to the weights xj , where λ and µ are the Lagrange multipliers.  This leads to the
result:

xj =  [λ cos(φj) + µ sin(φj) ] / {2∑n σj
2(tn)}   (6)

We can now use the two constraints equations to determine λ and µ.  In order to simplify the
resulting expression let us introduce the following notation for the sums involved:

∑ss = 
j

∑ sin2(φj)/∆j ; ∑sc = 
j

∑ sin(φj)cos(φj)/∆j ; ∑cc = 
j

∑ ∑j cos2(φj)/∆j

where ∆j = 2 
n

∑ σj
2(tn)

The final result for the weights xj is then:

xj = ∆j
-1{ cos(φj) - sin(φj) ∑sc / ∑ss}/ { ∑cc - (∑sc)2 / ∑ss} (7)

We can now choose a second orthogonal value for the phase and define another function Y(t)
such that:

Y(tn)  =  Dj(tn) sin(ωLtn) = 
j

∑ yj dj(tn) (8)

The weights yj are now chosen so that 
j

∑ yj cos(φj) = 0  and 
j

∑ yj sin(φj) = -1. Following the

same method we find that the weights are given by:

yj = ∆j
-1{ -sin(φj) + cos(φj) ∑sc / ∑cc}/ { ∑ss - (∑sc)2 / ∑cc} (9)

By combining all J histograms with the appropriate weights xj and yj we can project out two
histograms with orthogonal phases.  These contain all the original information and the variance of
each is of order 1/J times that of a single histogram.  These projections of the data are very
convenient for displaying the "real" information content in the data and for modelling the form of
the depolarisation, as discussed in section 3.1 above, since now there are only two amplitudes to
be determined, besides the parameters describing the model for Px(t).   It is also possible to
combine the two histograms with orthogonal phases to give a signal proportional to Px(t)
directly, without any oscillating component.

3.3 Transforming data into the frequency domain

Case (b)  If the muon sees a distribution of internal fields the counts in each detector will be:



Cj (tn) = Nj
0 ∆t exp(- tn / τµ) [ 1 + Aj Fj(tn)] (10)

where  Fj(tn) = 
0

∞

∫ F(ω) cos(ωtn- φj) dω.

The function F(ω) gives the distribution of precession frequencies, which maps directly onto the
distribution of internal fields through the gyromagnetic ratio: ω  =  γB.  The problem is how to
extract F(ω) from the data.  This is clearly a Fourier transform problem, but standard Fourier
methods have some drawbacks, in particular:

(i) The poor statistical accuracy of the µSR data at long times leads to very noisy
transforms.  Of course there are standard techniques for coping with this, for example use of
window functions ("apodisation").  There is a large literature on how to choose the optimum
window function, however whichever one is chosen, they all involve throwing away data, and
some deterioration of the frequency resolution.

(ii) We have a problem of how to derive a unique frequency spectrum F(ω) from 32
separate histograms, with different phases φj.

Recently this problem has been tackled using the Maximum Entropy method [1].  This technique
has been widely used to deal with a range of inverse problems in fields such as radio astronomy,
geophysics and image reconstruction (including processing images from the Hubble telescope to
correct for the aberrations in the mirror) etc.  Applied to the present problem it has many
advantages:

• It uses all the data available, but allows a unique frequency spectrum to be determined
from multiple histograms.

 • The frequency spectrum derived is necessarily positive.
 • There are no prior assumptions about the form of F(ω ).
 • It gives the most uniform (N.B. not smoothest) distribution consistent with the data.
 • It is possible to include convolution with the muon pulse shape.
 • The ultimate frequency resolution can be achieved.

Details of the method will not be given here, since they are discussed in ref.[1]. Briefly the
entropy S is defined in the information theoretic sense as

S = 
k

∑ (pk / bk) log(pk / bk)

where the {pk} represent the heights of the bins in the histogram representing the frequency
spectrum. The bk represent the default values which give a scale to the magnitudes of the pk.  In
practice the default is taken to be a flat level, independent of k. Starting from this featureless
default level, the ME algorithm searches for a solution which maximises S - λχ2, where λ is a
Lagrange multiplier.  Initially λ is chosen so that the algorithm puts most effort into minimising  χ
2, with the aim of reducing its value to be equal to the number of data points.  In the later stages
the value of λ is altered to concentrate on maximising the entropy.  The advantage of the
technique is that it tackles the forward problem, i.e. generates a frequency spectrum which is then
transformed, as in (10), to give the measured counts in each histogram, which are then compared



to the measured values.  This facilitates the incorporation of any transformation between the
frequency domain and the time domain, e.g. convolution with the pulse shape of the muon bursts.
The resulting frequency spectra produced by the method are impressive.  For example Fig.1
shows the frequency spectrum for silver, which is very close to a delta function, as we might
expect.  This technique has been widely used by a number of groups (2) to study the mixed state of
super- conductors. The distribution of internal fields in this case is highly asymmetric, with a high
field tail extending up to Bc2, resulting from the flux lattice structure.  The asymmetry of the µSR
frequency distribution can therefore be used as an indicator of a well ordered flux lattice.

4. Limitations to the transverse µSR method.

4.1 Effect of finite muon lifetime.

Clearly µSR would not work if the muon did not decay!  However the finite lifetime of the muon
means that we can only collect useful data for, perhaps, five muon lifetimes (data at longer times
are useful if we are prepared to count for a long time to improve the statistics).  This immediately
implies a limit to the frequency resolution of the transverse µSR technique.  To see this consider
the standard approach from the theory of discrete Fourier transforms (DFT): in a DFT of data
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Figure 1.  Frequency spectrum from a Maxent analysis of a silver data set
with Bext= 220 gauss.  The width of one frequency channel corresponds to
30.5  kHz or 2.25 gauss.  The small feature to the left of the main peak near
channel 92 is due to muons stopping in the end of a collimator.



comprising n channels with channel width  ∆t the frequency resolution  ∆f is simply 1/n ∆t = 1/T,
i.e. the reciprocal of the total time for which data has been collected.  If we take T = 5τµ = 11
µsec, then ∆f ≈ 90 kHz. Transforming this from frequency to magnetic field, using the
gyromagnetic ratio of the muon, the resolution in magnetic field is about 0.7 mT or 7 gauss.  Note
that this is a fundamental restriction, no matter how good our instrumentation or data analysis.

4.2 Effect of finite pulse width.

The time structure of the muon beam at ISIS reflects that of the proton pulses at the production
target, i.e. two pulses of width 70 ns (FWHM) with a separation of 340 ns.  The repetition rate is
50 Hz.  The pulses are further smeared by the 26 ns lifetime of the parent pions.  The first of the
double pulses is split between the two µSR instruments EMU and DEVA, while the second pulse
passes on to the MUSR instrument.  It follows that the time dependent count-rate (3) or (10)
should be convoluted with the pulse shape of the incident muon beam.  This will have a significant
effect only when there are variations in the count-rate on a time scale comparable to the pulse
width.  There are two particular cases where this might be important: (i) when the Larmor
precession frequency is high, and (ii) where there is rapid decay of the muon polarisation.  Let us
consider these in turn.

4.2 (i) Upper limit to the external field.

Suppose that we take the muon pulse shape to be a gaussian: W(t) = exp(-t2/τw
2).  This is not

strictly correct: a better approximation at ISIS is an inverted parabola, describing the proton
pulse, convoluted with a decaying exponential, in order to account for the pion lifetime
component.  However a simple gaussian simplifies the result greatly.  If we are studying a material
like silver which is weakly damped, the resulting signal would be the convolution of the "ideal"
signal  [1 + A cos(ωLt)] with W(t). Here A is the ideal asymmetry and ωL is the Larmor precession
frequency, as usual.  It is straightforward to show that the effect of the convolution is to reduce
the asymmetry to a value Aexp[- (ωLτ)2/4].  The reduction in the asymmetry with applied field is
shown in Fig.2 for different values of the pulse width τw.  It follows that the asymmetry falls to 1/e
of its ideal value at an applied field B given by (ωL/2) = (γ/2) B1/e = 1/( τw).  For a pulse width of
70 ns (FWHM) the value of τw ≈ 42 ns, and the corresponding field B1/e is 560 gauss.  The
reduced asymmetry resulting from high Larmor precession rates degrades the signal to noise, as is
clear from the discussion in section 1 above.

4.2 (ii) Upper limit to damping rate.

If the damping rate were very high then the muon polarisation Px(t) would fall to a small value
within one Larmor precession period, or in the extreme case, within the muon pulse width.  In the
latter case, Lorentzian damping would only be visible for values of the damping rate smaller than  
λmax given by, say, exp(-λmaxτw) ≈  e-1, that is we suppose that the muon polarisation decays by 1/e
over the duration of the muon pulse.  Using the above value τ w = 42 ns gives a value for λmax ≈24
µs -1.  However to extract such a value from real data would require a very accurate knowledge of
the pulse shape and the start times for each histogram, and a careful deconvolution procedure.
Notice that the situation at ISIS for measuring heavily damped signals is very much improved now



that single pulses are used: with the same criterion as above for a double pulse of muons
separated by 320 ns we find a value of λmax of only 2.9µs -1. In practice deconvolution of the pulse
shape is necessary to extract reliable values of λ for damping rates greater than 3-5µs -1, but the
extra data analysis effort required is well justified.
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